Non-string quantum gravity

Fotini Markopoulou Perimeter Institute Non-string quantum gravity

Dynamical Triangulations

Canonical Quantum Gravity

Spin Foams

Causal Dynamical Triangulations

Causal Sets

Semi-classical GR (Black holes etc)

Loop Quantum Gravity

Asymptotic freedom

Quantum gravity phenomenology

Quantum Causal Histories

The Computational Universe

Internal Relativity

Doubly Special Relativity

Background-independent cond matt models

Physics of the Fermi point

Unifying theme

Order the different approaches using the notion of background independence

Outline

- What is background independence?
- How it has been implemented traditionally: examples
- A (personal) assessment and a central question
- New approaches: background independence in a new light

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

 $\phi \in \text{Diff}\Sigma$

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

$$S_{\rm HE} = \int d^4x \,\sqrt{g}R$$
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$$

manifold \mathcal{M} metric $g_{\mu\nu}$ curvature $R_{\mu\nu}$ matter $T_{\mu\nu}$

Solutions to the Einstein Equations are $\operatorname{Diff}\mathcal{M}$ -invariant.

Only events and causal relations are physical: Background Independence
The metric is dynamical

Background independence as a principle in quantum gravity

Background Independence I:

There should be no preferred geometry in the formulation of the quantum theory of gravity.

Quantum gravity is given by a quantum superposition of quantum geometries.

Non-string quantum gravity

Spin Foams

Dynamical Triangulations

Causal Dynamical Triangulations

Causal Sets

Background independence I implemented via superposition of quantum geometries

Canonical Quantum Gravity

Loop Quantum Gravity

Semi-classical GR (Black holes etc) Asymptotic freedom

Background independence II without geometry

Quantum gravity phenomenology

Doubly Special Relativity

Physics of the Fermi point

Quantum Causal Histories

The Computational Universe

Internal Relativity

Background-independent cond matt models

Canonical quantization of General Relativity.

$$S_{\rm HE} = \int d^4x \ \sqrt{g}R \quad \longrightarrow \quad S_{3+1} = \int d^3x \ dt \ \left(\mathcal{H}N + \mathcal{H}_i N^i\right)$$
$$\mathcal{H} = 0 = \mathcal{H}_i \qquad \qquad \mathcal{H}_i \xrightarrow{\Sigma}$$

Canonical quantization of General Relativity.

$$S_{\rm HE} = \int d^4x \sqrt{g}R \longrightarrow S_{3+1} = \int d^3x \, dt \, \left(\mathcal{H}N + \mathcal{H}_i N^i\right)$$

$$\checkmark \text{ Spatial quantum geometry states}$$

$$\checkmark \text{ Invariant under Diff}\Sigma \qquad \mathcal{H} = 0 = \mathcal{H}_i \qquad \overbrace{\mathcal{H}_i}^{\Sigma}$$

$$\checkmark \text{ Unique}$$

Canonical quantization of General Relativity.

But: $\operatorname{Diff} \mathcal{M} \neq \operatorname{Diff} \Sigma \times R$

$$\{\mathcal{H}(x), \mathcal{H}(x')\} = g^{ij} \mathcal{H}_i \delta_{,j}(x, x') - (x \leftrightarrow x')$$

$$\{\mathcal{H}(x), \mathcal{H}_i(x')\} = \mathcal{H}_{,i} \delta(x, x') + \mathcal{H} \delta_{,i}(x, x')$$

$$\{\mathcal{H}_i(x), \mathcal{H}_j(x')\} = \mathcal{H}_j \delta_{,i}(x, x') - (x \leftrightarrow x')$$

Canonical quantization of General Relativity.

$$S_{\rm HE} = \int d^4x \ \sqrt{g}R \quad \longrightarrow \quad S_{3+1} = \int d^3x \ dt \ \left(\mathcal{H}N + \mathcal{H}_i N^i\right)$$

$$\checkmark \text{ Spatial quantum geometry states}$$

$$\checkmark \text{ Invariant under Diff}\Sigma$$

$$\checkmark \text{ Unique}$$

$$\mathcal{H} = 0 = \mathcal{H}_i$$

$$\mathcal{H}_i \xrightarrow{\Sigma}$$

But: $\operatorname{Diff} \mathcal{M} \neq \operatorname{Diff} \Sigma \times R$

$$\{\mathcal{H}(x), \mathcal{H}(x')\} = g^{ij} \mathcal{H}_i \delta_{,j}(x, x') - (x \leftrightarrow x')$$

$$\{\mathcal{H}(x), \mathcal{H}_i(x')\} = \mathcal{H}_{,i} \delta(x, x') + \mathcal{H} \delta_{,i}(x, x')$$

$$\{\mathcal{H}_i(x), \mathcal{H}_j(x')\} = \mathcal{H}_j \delta_{,i}(x, x') - (x \leftrightarrow x')$$

- The physical sector (${
 m Diff} {\mathcal M}$ -invariant states) is not known.
- General relativity $\begin{array}{c} quantize \\ \overrightarrow{2} \end{array}$ loop quantum gravity
- Low energy limit and contact with observations runs into problem of time

A statistical model of quantum geometries, weighed by the Einstein action.

$$egin{aligned} &A\left(L(in),L(out),1
ight)=rac{g^2L_1L_2}{(1-L_1)(1-gL_1-gL_2)}\ &A_{L(in) o L(out)}=\sum_{t=0}^\infty A\left(L(in),L(out),t
ight) \end{aligned}$$

Causality condition: advance everyone at every step.

A statistical model of quantum geometries, weighed by the Einstein action.

$$egin{aligned} &A\left(L(in),L(out),1
ight)=rac{g^2L_1L_2}{(1-L_1)(1-gL_1-gL_2)}\ &A_{L(in) o L(out)}=\sum_{t=0}^\infty A\left(L(in),L(out),t
ight) \end{aligned}$$

Causality condition: advance everyone at every step.

A statistical model of quantum geometries, weighed by the Einstein action.

$$egin{aligned} &A\left(L(in),L(out),1
ight)=rac{g^{2}L_{1}L_{2}}{(1-L_{1})(1-gL_{1}-gL_{2})}\ &A_{L(in)
ightarrow L(out)}=\sum_{t=0}^{\infty}A\left(L(in),L(out),t
ight) \end{aligned}$$

Causality condition: advance everyone at every step.

Convergent, tractable
 Well-behaved typical histories
 Also when matter is added
 Correct dimension
 High-energy prediction: evidence for 2d.
 New universality class discovered.

A statistical model of quantum geometries, weighed by the Einstein action.

$$egin{aligned} &A\left(L(in),L(out),1
ight)=rac{g^{2}L_{1}L_{2}}{(1-L_{1})(1-gL_{1}-gL_{2})}\ &A_{L(in)
ightarrow L(out)}=\sum_{t=0}^{\infty}A\left(L(in),L(out),t
ight) \end{aligned}$$

Causality condition: advance everyone at every step.

Convergent, tractable
 Well-behaved typical histories
 Also when matter is added
 Correct dimension
 High-energy prediction: evidence for 2d.
 New universality class discovered.

- Gravity in progress.
- What is the meaning of the causality condition?

My view

Quantum gravity phenomenology: $l_{\rm Pl}$ within reach means pressure for predictions.

=>Emphasis on the classical, low energy limit.

Crucial feature: time. Have time, can predict. Is it ok to have time?

My view

Quantum gravity phenomenology: $l_{\rm Pl}$ within reach means pressure for predictions.

=>Emphasis on the classical, low energy limit.

Crucial feature: time. Have time, can predict. Is it ok to have time?

Main open issue

Is gravity/geometry fundamental or emergent?

Arguments for emergent geometry/time:

- Black hole thermodynamics
- Einstein Equation of state gr-qc/9504004
- Holographic arguments
- Cond matt approaches
- Problem of time

Revisit Background Independence

Background Independence I:

There should be no preferred geometry in the formulation of the quantum theory of gravity.

Quantum gravity is given by a quantum superposition of quantum geometries.

Background Independence II:

There are no geometric or gravitational degrees of freedom in the fundamental theory.

Geometry is only a classical, emergent concept.

Quantum graphity: an example of a BI II model.

geometrogenesis phase transition

$\mathsf{High-}\,T$

- Permutation symmetry
- No locality
- Relational
- $\langle d_{ij} \rangle = 1$
- $\sim \infty$ -dimensional
- external time
- micro-matter

- Translations
- Local
- Relational
- $\langle d_{ij} \rangle$ large
- low-dimensional
- external and internal time
- macro-matter and dynamical geometry

Einstein equations are to be derived, not quantized (ask O.Dreyer how).

Summary

More open questions

- Relevance of $l_{\rm Pl}$
- Time seems to imply a bath
- The quantum/classical transition
- Pre-geometry signature in early universe cosmology