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1 Why Change Quantum Theory?

An interpretation of a theory may be defined as a set of rules for going from
mathematical statements to statements about reality. In particular, given an
initial state vector and the Hamiltonian governing its evolution, an interpreta-
tion of quantum theory should enable one to say which are the states which
might be realized in nature, and their probabilities of realization.

The famous so-called “measurement problem,” which I prefer to call the “re-
ality problem,” is that no currently proposed interpretation of standard quan-
tum theory is well-defined. The “Copenhagen Interpretation” rules rely upon
the undefined notion of apparatus. The “Everett/Relative State/Many Worlds
Interpretations” rules rely upon the undefined notion of observer or (in its most
recent manifestation) the success of the Decoherent Histories program. This
latter is not yet well-defined in that general rules for picking the projection
operators and times of projection which its formalism requires are still lacking.

Quantum theory has been around a long time, so one might reasonably
suspect that it is incapable of supporting a well-defined interpretation. If a
mathematical theory is not well-defined, that is obviously reason for improving
it. The same should be true of a physical theory.

This is the motivation for altering quantum theory so that it describes wave
function collapse as a dynamical, physical, process. In the theory discussed here
(called Continuous Spontaneous Localization, or CSL), an anti-Hermitian, op-
erator is added to the Hamiltonian in Schrödinger’s equation. This operator is
a randomly fluctuating scalar field w(x, t) coupled to the mass density of parti-
cles. The altered evolution evolves a state vector, expressed as a superposition
of states of different mass density configurations, toward one of those states.

The evolution is very slow if e.g., the states differ in the relative displace-
ment of just a few particles, so that the usual quantum theory predictions of
microscopic behavior are negligibly affected. The evolution is very rapid if e.g.,
the states differ in the relative displacement of a macroscopic object: thus, the
state vector describes the macroscopic world we see around us instead of (what
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may be thought of as) a superposition of such worlds.
In addition to the altered Schrödinger equation, the theory supplies a sec-

ond equation, the “probability rule.” It says that the probability any particular
field w(x, t) (and therefore its associated state vector) is realized in nature, is
proportional to the squared norm of the (non-unitarily evolving) state vector.
So, large norm state vectors are more probable than small norm state vectors.
Applied to all so-far performed experiments, the probability predictions of CSL
differ undetectably from that given by the Born Rule. However, there are exper-
iments, some of which may soon prove feasible, whose outcomes are predicted
to differ from those predicted by standard quantum theory.

CSL does resolve the reality (measurement) problem: it has a well-defined
interpretation. Put any w(x, t) (of white noise type) into the modified of
Schrödinger equation, and the resulting state is a realizable state of nature.
The probability rule gives its probability of realization.

Feynman wrote in 1965:

“We have to find a new view of the world that has to agree with everything that is
known, but disagree in its predictions somewhere, otherwise it is not interesting. And in
that disagreement it must agree with nature. If you can find any other view of the world
which agrees over the entire range where things have already been observed, but disagrees
somewhere else, you have made a great discovery. It is very nearly impossible, but not quite,
to find any theory which agrees with experiments over the entire range in which all theories
have been checked, and yet gives different consequences in some other range, even a theory
whose different consequences do not turn out to agree with nature. ”

CSL may be considered, at present, to be described by most of the last sentence:
whether it turns out to be described by the next-to-last sentence, or just the
last phrase of the last sentence, remains to be seen.

2 How It Works

Idealized collapse dynamics works as follows. If the initial state vector is

|ψ, 0〉 =
N∑

n=1

cn(0)|an〉, (1)

(where the |an〉 are eigenstates of an operator A with nondegenerate eigenvalues
an), it should evolve as t→∞ to one of the |an〉 with probability |cn(0)|2.

There is an intuitively appealing analogy to collapse dynamics, the Gam-
bler’s Ruin Game. Consider, for simplicity, two gamblers, one of whom has
$60, the other $40 (analogous to there being two states |a1〉, |a2〉, with initial
respective amplitudes c1(0) =

√
.6, c2(0) =

√
.4). They toss a coin: heads, one

gambler receives a dollar from the other, tails, the dollar goes the other way (the
amplitudes c1(t), c2(t) fluctuate with time, but |c1(t)|2 + |c2(t)|2 = 1). Eventu-
ally one of the gamblers wins all the money so the game stops: the gambler with
$60 initial stake, will win 60% of such repeated games (analogously, |c1(t)| → 1,
|c2(t)| → 0 for 60% of the evolutions).
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Here is the evolution which mimics this game’s behavior. The solution of the
modified Schrödinger equation mentioned earlier, with the Hamiltonian H = 0,
is

|ψ, t〉w ≡ e−(4λ)−1 R t
0 dt′[w(t′)−2λA]2 |ψ, 0〉

=
2∑

n=1

cn|an〉e−(4λ)−1 R t
0 dt′[w(t′)−2λan]2 , (2)

where the constant λ characterizes the collapse rate and the second equation in
(2) utilizes Eq. (1) with N = 2.

The probability associated to |ψ, t〉w, as mentioned earlier, is

Pw(t)Dw ≡w〈ψ, t|ψ, t〉wDw =
2∑

n=1

|cn|2e−(2λ)−1 R t
0 dt′[w(t′)−2λan]2Dw. (3)

In Eq. (3), Dw ≡ Cdw(0)dw(∆t)dw(2∆t)...dw(t), and C = (2πλ/∆t)−t/∆t, so
that the total probability, integrated over all w(n∆t), is 1. It can readily be
shown that only w(x, t)’s for which

T−1

∫ T

0

dt′w(t′) → 2λa1 or → 2λa2 as T →∞

have non-vanishing asymptotic probability (3). If e.g., T−1
∫ T

0
dt′w(t′) → 2λa1,

Eqs. (2), (3) asymptotically become

|ψ, t〉w ≈ c1|a1〉e−(4λ)−1 R t
0 dt′[w(t′)−2λa1]

2
, (4)

Pw(t)Dw ≈ |c1|2e−(2λ)−1 R t
0 dt′[w(t′)−2λa1]

2
Dw. (5)

(4) is a (un-normalized) collapsed state, and the integral of (5)’s probability
over all w(t)’s is |c1|2.

The density matrix constructed from (2), (3) is

ρ =
∫
Pw(t)Dw

|ψ, t〉w w〈ψ, t|
w〈ψ, t|ψ, t〉w

=
2∑

n,m=1

cnc
∗
m|an〉〈am|e−(λt/2)(an−am)2 , (6)

from which one can see that the decay rate of the off-diagonal elements increases
as the eigenvalue difference increases.

For many mutually commuting operators Ak, and with a possibly time-
dependent Hamiltonian H(t), the evolution (2) becomes

|ψ, t〉w ≡ T e−
R t
0 dt′{iH(t′)+(4λ)−1 P

k[wk(t′)−2λAk]2}|ψ, 0〉 (7)

(T is the time-ordering operator).
For CSL, the index k corresponds to spatial position x, so that wk(t) →

w(x, t) can be regarded as a physical field. Ak → A(x) is chosen to be the mass
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density operator M(x) “smeared” over a region of length a (a second parameter
in the theory) around x:

|ψ, t〉w ≡ T e−
R t
0 dt′{iH(t′)+(4λ)−1 R

dx[w(x,t′)−2λA(x)]2}|ψ, 0〉, (8)

dρ(t)
dt

= −i[H, ρ(t)]− λ

2

∫
dx[A(x), [A(x), ρ(t)]] (9)

A(x) ≡ 1
m0(πa2)3/4

∫
dze−

1
2a2 (x−z)2M(z), (10)

(m0 is taken to be the proton’s mass). Eq.(9) follows from (8) and the first
equations in (3), (6). The parameter values λ = 10−16sec−1 and a = 10−5cm,
which were chosen by Ghirardi, Rimini and Weber for their collapse model
(which contributed essential ideas to CSL) shall be adopted. If CSL indeed
describes nature, these numbers should be open to experimental determination.

The dynamical equation (8) and the probability rule (the first equation in (2)
constitute the CSL model, which can be applied to any non-relativistic physical
system. CSL works by recognizing a superposition of states which differ in their
distribution of mass density, and conducting a gambler’s ruin-type competition
among them.

3 A Role For Collapse in Cosmogenesis?

The instigators of this workshop requested that we speak about “One bold but
half-baked (or half- to three-quarters-baked) idea that you have been thinking
about recently... .” Here’s one. If the beginning of our universe was a quantum
event, and if state vector collapse is a real physical process, then perhaps it
played a role in the selection, and even in the generation, of our universe.

Here is a simple illustrative model. One might suppose that there is a Hamil-
tonian which describes the creation of the universe out of the vacuum. The
Schrödinger evolution might produce a superposition of different geometries, of
different pre-inflationary configurations, etc. For our much less sophisticated
model, we shall take a Hamiltonian, acting in a pre-ordained volume V , which
produces a superposition of different numbers of particles of mass m out of the
initial vacuum state |0〉, and which acts for a time interval T :

H =
∫

V

dx{mξ†(x)ξ(x) + g[ξ(x) + ξ†(x)]}. (11)

where ξ(x) is the annihilation operator for a particle at x and g is a coupling
constant. H can be thought of as describing a displaced harmonic oscillator at
every point of space. The solution of the usual Schrödinger equation is

|ψ, t〉 = eiTg2V/me−(g/m)
R

V
dx[ξ†(x)+(g/m)][1−e−imT ]|0〉. (12)

The mean number of particles oscillates:

n(T ) ≡ 〈ψ, t|
∫

V

dxξ†(x)ξ(x)|ψ, t〉 = 2V
(
g

m

)2

(1− cosmT ). (13)
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Suppose that CSL collapse dynamics holds even at the beginning of the
universe. Using Eq. (9) , one may find coupled equations for n(T ) (here defined
as n(T ) ≡Tr

∫
V
dxξ†(x)ξ(x)ρ(T )) and Tr

∫
V
dx[ξ†(x)±ξ(x)]ρ(T ) (Tr is the trace

operator), with the result

n(T ) =
g2V

m2 + (λ/2)2
{λT − 2[cos θ − e−(λ/2)T cos(θ +mT )]} (14)

(θ ≡ 2 tan−1(2m/λ)). Two things are happening here.
One is that, as the Hamiltonian generates a superposition of different “uni-

verses” with different particle density distributions, the collapse term acts to
select one of them, “our universe.”

The other is that the collapse effectively continually excites the harmonic
oscillators at each point of space. The result, on average, is that the number of
particles in the universe grows linearly with time, ∼ g2λ. That is, the creation
of an interesting universe is a cooperative venture, requiring both Hamiltonian
and collapse dynamics.

(As an aside, note that n(T ) → 0 as λ → ∞. The universe remains in the
vacuum state due to “watched pot” or “Zeno’s paradox” behavior: the collapse
occurs so fast that there is no chance for the vacuum state to evolve).

4 A Gravitational Role For Collapse?

Collapse dynamics narrows particle wave functions and so, by the uncertainty
principle, particles gain energy. For example, there is a small probability that
an electron will be knocked out of an atom, or a nucleon out of a nucleus.

One can show from (9), regardless of the interaction potential, that the
ensemble average energy E ≡TrHρ(t) gained by each particle of mass m over
the age t of the universe is

E = t
3~2λm

(2m0a)2
≈ 10−16mc2. (15)

This is a very small amount, certainly not of cosmological significance. Nonethe-
less, conservation of energy is an important physical principle, and it would be
good not to violate it. It turns out that one can associate an energy with w(x, t),
and with its interaction with particles, such that the total energy is conserved.
This involves quantizing the w-field, but we shall not need the details here.

As is usual in quantum theory, conservation of energy is guaranteed to hold
for the whole ensemble, not for the individual states in the ensemble. However,
as in quantum theory, there are certain circumstances where energy conserva-
tion does hold for individual states. For example, expand the initial state in
eigenstates of the particle density basis. If, in this basis, off-diagonal matrix
elements of powers of H vanish (as would be the case if these basis states are
macroscopically distinct), then the energy associated with each such evolving
basis state is separately conserved. That is, the energy spectrum of the initial
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basis state is the same as the energy spectrum of all the collapsed states to
which this initial basis state evolves.

For our half-baked application, lets concentrate just upon the expectation
values of the particle energy, the w-field energy, and their energy densities.
It can be shown that the expectation value of the interaction energy of the
particles with the w-field vanishes. Thus, the sum of the expectation value of
the particle energy and the w-field energy is constant. Assume that the w-field
energy’s initial value is zero. As the dynamics progresses, its expectation value
becomes negative. The expectation value of the w-field energy density, starting
at 0, can go positive or negative, but its integral over all space is negative. The
w-field energy density in this formulation doesn’t move: once it is created in a
volume, it just stays stuck in space. Further particle collapse in that volume
subtracts or adds to the energy density there, such that the expectation value
of the integrated energy density continues to diminish.

Now for the half-baked idea. Consider semi-classical gravity, the Einstein
equation’s left side equated to the quantum expectation value of the stress tensor
of the particles in the universe. This cannot be a correct equation if there is
collapse dynamics. The particles alone do not conserve energy-momentum so
the particles’ stress tensor term does not have a vanishing divergence. This
argues that, to the stress tensor term belonging to the particles, there ought to
be added a stress tensor term belonging to the w-field, such that the divergence
of the sum vanishes.

Given such a w-field stress tensor term (full half-baked disclosure—I do not
have such a term), it then follows that the w-field energy exerts a gravitational
force. In particular, if the energy density is negative, it repels particles.

The putative negative energy the w-field acquires, equal to the kinetic energy
(15) gained by particles undergoing collapse is, likewise, much too small to be
of cosmological significance. However, it is otherwise for the universe-creation
scheme of the previous section.

As the universe grows from the vacuum and acquires particle mass-energy,
the w-field acquires a comparable negative energy. Thus, the picture emerges
of a w-field density, positive in some places, negative in others, such that the
total w-field energy is negative and equal to the total particle mass-energy in
the universe. Once creation of the universe ceases, the w-field energy density,
positive and negative, is stuck in space, if we accept the behavior mentioned
previously. One might expect that the negative energy density would repel
matter, creating voids, while the positive energy density would attract matter,
perhaps acting as seeds for galaxy formation.

To conclude, my question at this workshop was, might this set of ideas, or
some variation on them, be of any use to astrophysical modeling? What might
be the effect of the w-field energy on the expansion of the universe? Might such
ideas be testable or ruled out by observation?
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