
University of California, Berkeley
Project Title
Quantum Information, Quantum Gravity, and Quantifying How Much Happens
Project Summary
Theories predict what should happen; experiments measure what does happen. But what does it mean for something to “happen”? Physics is a quantitative science: its most stunning insights are invariably rooted in associating numbers with the concepts it attempts to describe. So if we wish to understand what events are, we should first figure out how many there are. In a given region or matter system, what should we compute to determine how much “happens”? In tackling this question, I will explore a profound connection between the notion of “happening,” and recent advances in the study of quantum information and of black holes. In quantum mechanics, how much “happens” can be measured in terms of entanglement, the “spooky action” that troubled Einstein. But in quantum field theory—the guise in which quantum mechanics actually appears to us—the entanglement is always infinite. More refined notions from quantum information theory will have to be employed to capture how much “happens.” On the largest scales, in cosmology, even these sophisticated tools are undermined by the dominant role of the gravitational force. The only way forward appears to be to include quantum gravity—the entanglement of spacetime itself—in our accounting of what happens.
Back to List of Awardees