Richard said, "It is an arithmetic fact that whichever of the 2 to the 4N data sets is actually realized, it will satisfy \(\text{ave}(AB) + \text{ave}(A'B) + \text{ave}(AB') \) is less than or equal to \(\text{ave}(A'B') + 2 \)."

If that is true, then you must be rigging the game. Are you saying that the Weihs et al, experimental data gave that answer above?

Fred

Dear Richard Gill,

I have annotated your remarks of Apr. 7, 2012 @ 18:14 to show my understanding of Joy's model:

You said, "In Joy's view, the real strength of his model stems from the fact that the bivector term vanishes naturally as a result of the statistical summation over the points of a parallelized 3-sphere. This is most clearly seen in the transition from equation (6) to (7) in his one-page paper. The transition uses the following two equations, which are also the only two postulates on which his model is based:

(1) \(B_j(\lambda) B_k(\lambda) = -\delta_{jk} - \sum_l \epsilon_{jkl} B_l(\lambda) \)
(2) \(B_j(\lambda) = \lambda B_j \).

Let me write down some immediate consequences of (1) and (2).

\[
\begin{align*}
B_1(+) B_2(+) &= -B_3(+) \\
B_1(+) &= B_1, B_2(+) &= B_2, B_3(+) &= B_3 \\
B_1 B_2 &= -B_3 \quad \text{//--- at the time of one experimental run, with } \lambda = \text{plus one.} \\
B_1(-) B_2(-) &= -B_3(-) \\
B_1(-) &= -B_1, B_2(-) &= -B_2, B_3(-) &= -B_3 \\
B_1 B_2 &= B_3 \quad \text{//--- during a *different* experimental run, after } \lambda \text{ has changed.} \\
B_3 &= -B_3 \quad \text{//--- No, this condition (heads=tails) *never* holds at the same time.} \\
B_3 &= 0 \quad \text{//--- there is *never* a time when this is true.}
\end{align*}
\]

The model has vanished." //--- due to use of a non-physical, non-realistic assumption.

Joy clearly states "at the start of each run of the experiment Nature makes a choice between the two alternative bivector bases defined above..."

Richard, I have a number of problems with Joy's model, but I think we should not manufacture problems. I addressed exactly this situation weeks ago with the example of a room with two closed doors, only one of which is ever open at any one time, and the difficulties associated with drawing conclusions about things that happened at different times. I think it is inappropriate to recycle previously resolved problems.

Edwin Eugene Klingman