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Abstract. If “fundamental” means something that is at the root of everything, then
the physical laws and the objects to which they apply seem to be fundamental. But by
looking at the mathematical structure of various theories in physics, we see that “funda-
mentalness” is relative, revealing a holistic nature. Various types of holism also appear
in quantum theory, in Bohm’s idea of implicate order, and in the holographic principle.
This essay goes beyond these, by proposing a type of fundamentalness as a mathematically
consistent basis for these forms of holism, the physical laws, and the ontology of physics.
The discussion is based on various examples from particle physics and its mathematical
formulation, and implications to what is “fundamental” are analyzed.

— Searching for the fundamental

The universe is rich in complex phenomena and situations of infinite diversity, yet somehow we
seem to be able to understand it to some degree, at least partially, in terms of a small number
of laws and concepts. Apparently, we can do this because there is much redundancy in how the
world is.

There are more different ways to analyze the world in terms of fundamental constituents.
This depends on our interests, which can be the nature of the substances from which things
are made, how they work, their purpose, the units of knowledge in which we translate the
world when we picture it inside our minds, or even what various aspects of the world make us
feel. And for each of these ways there are many paths we can follow to reach an answer. This
makes the quest extremely difficult, especially if we don’t have a clear idea of what we mean by
“fundamental”. And it is not easy to define it, given that reality tends to ignore our definitions.

In the following, I will focus on a particular meaning of “fundamental” as something that
is at the root of everything. We will analyze examples, mainly from physics, to understand the
elusive concept of fundamentalness.

— Isomorphic stories

Let’s begin by playing a game called number scrabble. Two players take turns to pick one integer
from 1 to 9, and each number can be picked only once. The winner is the one who collects 3
numbers totalizing 15, otherwise the game is draw. This game is known to be isomorphic to
another game, which is much more visual.
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This table allows the kid to play number scrabble indirectly, by playing tic-tac-toe, for which
there is a simple strategy to never lose.
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For the person playing number scrabble the elements of the game, its board, and the rules
are completely different than for the one playing tic-tac-toe, who doesn’t even think at numbers.
In the following, isomorphisms of mathematical structures will play a central role.

== Quantum holism

Could the world be made out of a small number of fundamental building blocks, by putting
them together like we do with bricks when building a house? Our experience of simpler objects
combining into more complex ones makes the idea that matter is made of atoms so appealing
to us. Atoms also seem to be made of more fundamental particles, but in a completely different
way from our naive idea of bricks. The behavior of particles is expressed by Schrodinger-like
relativistic wave equations. Atoms, molecules, even larger objects, are described by such waves.
Sometimes the wavefunction spreads and interferes, but if you catch it, you catch the entire
particle, not only that part of its wavefunction you thought was there. This wave spreads
everywhere, can be split by sending it through some slits or a beam splitter, but in some sense
it is undivided.

A single particle is a wave of various possible shapes. If a particle can have two possible
shapes, it can also have any superposition or linear combination of these shapes. So all possible
shapes of a wavefunction form a vector space. A property of a particle, like position or momen-
tum, is well defined only for some of the shapes. For example no shape can have well defined
position and momentum simultaneously. But the shapes which don’t have a given property are
superpositions of shapes having it. When you observe a particular property of a particle, the
shape of its wavefunction is found to be one which has that property, even if you thought from
previous observations that the shape was different. Any shape is a linear combination of other
shapes, so in some sense, it contains them all, and it can turn out to be any of them by looking
for the right property.

For the two electrons in the Helium atom even this image of waves spreading in space is
wrong, since the two electrons are not separate waves. They are in some sense a single wave on
a higher dimensional space, depending not only on the (z,y, z) coordinates, but on two copies
of them. When we put together two or more particles, the resulting wavefunction is no longer
a shape on space, but it is a tensor product of such spaces, and the total state is separable
only if it is a tensor product of single particle shapes. The particles in an atom, molecules, and
various larger systems, are not separate waves, they are superpositions of tensor products of
separate waves. Particles don’t have separate identities, but you can still catch one as if it has.
This way of composing particles to get larger systems differs from our usual experience even
more, because there are infinitely many ways to express quantum systems as superpositions of
systems made of separable waves. Can we still say that the wavefunction of a single particle is
something fundamental?



It is even more difficult to understand particles as individual when they are created or
annihilated. The best way we know to describe this is to see them not as independent parts,
but as excitations of a vacuum quantum field. Is this field fundamental, or the excitations
are?” Or maybe both? These excitations are also in superpositions like the ones described
earlier. Moreover, for an observer in accelerated motion, or on curved spacetime, the vacuum
itself appears as being excited, that is, as containing particles, even if for another observer the
vacuum seems to be empty'. The number of particles is not even something well defined like
an integer, and depends on the observer.

As we shall see, mathematics offer more adequate notions of composability and reducibility
than our classical intuition does, and has something important to tell us about fundamentalness.

== Relativity of fundamentalness

In mathematics, isomorphisms are ubiquitous. A mathematical structure can admit different
but equivalent descriptions or formulations. For example, Euclidean geometry can be formu-
lated axiomatically, as Euclid and Hilbert did (Hilbert, 2013), but it can also be formulated in
terms of symmetries, as Klein did in his Erlangen Program (Klein, 1893), or in terms of num-
bers and equations, formulation called analytic geometry. Also distinct theories may turn out
to be equivalent, for example logical operations with propositions are equivalent to operations
with sets, and also to logical gates.

To see what kinds of mathematical structures are useful in particle physics and what they tell
us about fundamentalness, we start with the Euclidean plane. Hilbert axiomatized Euclidean
geometry in a way which distinguishes various mathematical structures associated. Some of
the axioms refer to the relations between points and lines, ignoring distances and angles. What
results is affine geometry. Now one may wonder, why ignoring the angles and the distances?
The reason is that they are not uniquely determined by the relations between lines and points.
If you pick any two segments lying on distinct intersecting lines, there is a unique inner product
or metric according to which these segments are perpendicular and their lengths as units. This
uniquely determines the distance between any two points and the angle between any two lines.
There are infinitely many such choices.

The Euclidean plane can be seen as a hierarchy of mathematical structures: it is a set, a
topological space, a metric space (where distances are defined), a differential manifold, an affine
space, and if we choose an origin, a vector space. Can we say that one of these structures is more
fundamental than the others? For example, the topological structure can be obtained from the
metric structure, but it also exists in affine geometry, where no metric is chosen. Metric spaces
and topological spaces don’t always admit a differential structure or even a definite dimension.

Moreover, in the plane affine geometry axioms we can swap “points” with “lines”, “collinear”
and “concurrent” etc, and we get the same axioms. This isomorphism with itself (automor-
phism) leads to projective geometry.

So which object is more fundamental? We can regard points as more fundamental, lines
being just sets of points, or we can regard lines as more fundamental, points being the meeting
points of lines. We can even axiomatize geometry in terms of completely different structures,
like circles, in which case the axioms of Euclid or Hilbert become theorems.

We can reduce plane geometry to numbers, using coordinates. Points are identified by pairs
of real numbers, while lines, circles, ellipses, and other curves are described by equations to be
satisfied by the coordinates of their points. Are the pairs of numbers and the equations more
fundamental? If we change the reference frame the coordinates change too, so these numbers
can’t be fundamental.

But we can ignore the different forms in which we express various objects in different co-
ordinates, and focus on coordinate-independent invariants. For example, when changing the
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coordinates, a line remains a line, and a point remains a point. The invariants are usually
equivalence classes of the different coordinate representations of the same object. So why not
define geometry as the study of the structures that are invariant to various transformations?
This insight was proposed by Klein in the Erlangen program. Thus, the inhomogeneous linear
transformations of the plane define the affine geometry, the homogeneous linear transformation
define the vector geometry, the isometries define the Euclidean geometry, the projective trans-
formations the projective geometry etc. In this way, what is fundamental are the symmetries
and their invariants. We can still use coordinates, in which case the various transformations
can be expressed in terms of matrix multiplication.

Symmetry transformations are fundamental in physics. In special relativity, the principle of
relativity says that the physical laws and the scalar, vector, a and tensor fields are invariants of
the Poincaré symmetry. In gauge theory, various interactions can be understood as arising from
other symmetries. Symmetries also explain conservation laws, as shown by Emmy Noether.

The relativity of fundamentalness implied by different axiomatizations and formulations is
just epistemological fundamentalness. But the examples from the quantum world seem to imply
that reality is holistic and there is a relativity of the ontology itself. Should we then take the
whole universe as ontologically fundamental? Should we consider that what is fundamental
are not the various sets of principles from which everything can be derived, but rather an
equivalence class of them? Or maybe it is possible that something more fundamental than
these exists?

— Holographic fundamentalness

For Christiaan Huygens, waves behave as if each point of spacetime becomes a new source. In
quantum mechanics a similar picture is given by the propagator. The propagator was used by
Feynman in his path integral formalism, in which all possible histories contribute to reality.

David Bohm saw in the propagator an order present everywhere, unfolding and enfolding
continuously, alternating between being implicate and ezplicate (Bohm and Hiley, 1993; Bohm,
1995). He used as a metaphor two concentric cylinders, the space between them being filled with
a liquid having high viscosity, like glycerin. Drops of ink are placed in the glycerin at various
times, while the interior cylinder is slowly rotated. The rotation spreads the ink droplets into
the glycerin, making them disappear, but undoing the rotation makes them reappear, in a
succession which gives the impression of particles in motion. He made this metaphor rigorous
in an alternative formulation of quantum mechanics which could be used to explain the order
which unfolds and enfolds while the wavefunction propagates. He applied this formulation both
to standard quantum mechanics and to his own interpretation. Bohm compared his holistic
vision with a hologram, where every part encodes information about the whole.

Another application of holography is the holographic principle, proposed in cosmology
(’t Hooft, 1993; Susskind, 1995), motivated by the observation that a black hole can contain
a maximum amount of information proportional to the area of its horizon (Bekenstein, 1973;
Bardeen et al., 1973). The idea is that the information in a region is encoded on the boundary
of that region. It was further developed in the gauge-gravity duality conjecture (Maldacena,
1999), which proposes that there is a correspondence between quantum gravity and a conformal
field theory on the conformal boundary of spacetime. These proposals are not yet proven.

Next, I propose a kind of holism that goes way beyond the ones mentioned so far.



— Seeds for universes

To understand the idea of holism which I propose here, it is useful to discuss first a much
simpler example, which contains many of its features.

Let f be a function defined on a domain of the complex plane C, valued in C, so that its
derivatives at any point z; are independent on the direction in the complex plane in which we
vary z. This is equivalent to f being holomorphic, which means that it can be expanded in
power series of z at 2y, so it is also analytic. It is also equivalent to the condition that f depends
only on z, not on its conjugate zZ 2. Complex holomorphic functions have very nice properties,
such as the following holographic property: by knowing its values on a contour, you can find
its values everywhere inside the contour. Holomorphic functions are conformal — they preserve
the angles, but not necessarily the lengths. A complex function f is holomorphic iff it satisfies
the Cauchy-Riemann equations.

The power series at zy converges on a disk centered around zy, but you can move to another
point of the disk and write the power series at that point, and obtain another convergence
disk. By this analytic continuation you can extend f to its maximal domain. So we can fully
recover a holomorphic function just by knowing its derivatives of all orders at a single point z.
The collection of the derivatives at a point form a germ, in the sense of “seed”. This holistic
property is much stronger than just obtaining f from some boundary conditions, since in this
case the complete information about the hole is contained in every point.

If the function f has isolated singularities where it can’t be analytically continued, and
outside of them is holomorphic, it is called meromorphic. Meromorphic functions can be used
to represent the electric field in two dimensions, assuming that the charges are localized at
points. Then charges correspond to singularities. This suggests the possibility of describing the
Maxwell equations using some generalization of complex meromorphic functions.

The first idea to generalize complex holomorphic functions to a 4-dimensional spacetime
may be to use quaternions, since 1,1, 7,k span a 4-dimensional space. Indeed we can cast
Maxwell’s equations in terms of quaternions, but quaternions are not Lorentz invariant. To
make this generalization we need Clifford or geometric algebras.

If (V,) is a vector space with an inner product, then its geometric algebra is the associative
algebra defined by extending the product

ab:=a-b+aAb, (1)

where a,b € V and A denotes the exterior product. If V' is real and the matrix form of the inner
product, when diagonalized, has on its diagonal r pluses and s minuses, then the geometric
algebra is denoted by C¥,,. An orthonormal basis of V' gives a basis for C'/, , made of all
products of subsets of the basis of V', so the dimension of C, ¢ is 2"t*. The elements of C?, g
are the same as those of the exterior algebra A *V, but the Clifford product is associative and
includes both the exterior product and the inner product. If V' is of complex dimension n, then
its geometric algebra is denoted by C/,,, and its dimension is 2".

Coming back to the complex plane, we can obtain it using the geometric algebra C?; 4 as
follows. Take a basis (j, k) of the 2-dimensional real vector space endowed with a negative
definite inner product -, so j-j = k- k = —1, and define the associative product for which
jk = —kj and j? = k* = —1. Then, i := jk = j A k rotates j into k, since ij = k, and gives a
complex structure on the plane. We see that in this case 7 is not intrinsically imaginary, it is
just a rotation of the real 2-dimensional plane spanned by j and k. The notation ¢, j, k is not
accidental, since C/ o is isomorphic with the algebra of quaternions H. The Cauchy-Riemann

equations become
9 + /<:2 f=0 (2)
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The differential operator j a% + k;a% is a generalization of the operator introduced by Dirac to
write the equation of the electron (Dirac, P.A.M., 1928), and is called the Dirac operator.

The geometric algebra of the Lorentz metric, which can be diagonalized to (+, —, —, —), is
the spacetime algebra C?; 3. The Dirac operator appears in the equation of the electron, but it
can also be used to write the Maxwell equations in a single equation.

The geometric product is very compact, since it encodes many apparently distinct operations
like the inner product, the exterior product, scalar multiplication, multiplications between
vectors and scalars, and in 3 dimensions the vector product, in a single associative product.
Also, the Dirac operator includes differential operators like gradient, divergence, curl (in 3
dimensions). Its square is, depending on the signature, the Laplacian or the d’Allembertian
appearing in the wave equation. In fact, much of the mathematical physics can be formulated
in terms of geometric algebras (Hestenes and Sobcezyk, 2012).

Geometric algebras allow us to express in a compact way many equations in physics. What
we say in this formalism can also be said in the usual mathematical language, but in a less
compact form. This is not accidental — it is due to the fact that geometric algebra includes
apparently different parts of mathematical physics in an essentially more fundamental way.
Moreover, spacetime algebra naturally includes the spin group Spin, 5. Its leads naturally to
fermions, which are spinors. Spinors and tensors belong to representations of the spin group.
In addition, the Fock spaces of states of many fermions, including the entangled ones, as well
as important operators like those of creation and annihilation, are naturally represented using
geometric algebras.

The history of physics showed us that what we considered as fundamental will be replaced
by something more fundamental. This usually comes together with unifications. For example,
special relativity unified space and time, but also energy and momentum, and the electric and
magnetic fields into a single 2-form. If there are fundamental geometric structures in physics,
we expect them to bring not only a unification of the formalism, but also of principles and of
entities like particles and fields. If we expect that the holomorphic fundamentalness plays a role
in physics, probably the way is by geometric algebras®. And we shall see in the next section
that a unified model of the particles based on a geometric algebra is possible, suggesting that
fundamentalness may be holomorphic.

== Towards a holomorphic unification

The Standard Model of particle physics contains the electroweak and color forces, three genera-
tions of leptons and quarks, their antiparticles, and the Higgs boson. The types of particles and
their properties are known mainly from experiments. It is believed that more fundamental prin-
ciples and structures yet to be known determine all these particles, their properties, and other
parameters of the Standard Model taken from experiments. And we partially know something
about these more fundamental reasons — when combining special relativity with the unitary
symmetry of quantum mechanics it follows that particles have to belong to representations
of the spin group Spin, 3 combined with translations, which explains their spins and also the
equations they follow (Wigner, 1939). Particles are also representations of the gauge symmetry
groups, resulting in the electroweak and color interactions.

A major question is why these particular gauge symmetries and representations?

After the unification of the electromagnetic and weak interactions in a larger gauge group,
it was believed that there is an even larger group which also contains the color gauge symmetry.
Such proposals are based on the Lie groups SU(5) (Georgi and Glashow, 1974) and Spin(10)
(Georgi, 1975; Fritzsch and Minkowski, 1975). Unfortunately, unifications based on a larger
gauge group predict new interaction bosons, which would lead to proton decay, contradicting
the experiments. Also they didn’t explain why these particular representations out of infinitely
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many possible for each group.

Fortunately, there are other options. Rather than unifying the gauge groups in a larger
group, we can unify their Lie algebras in a larger algebra which is not necessary a Lie algebra.
It can be a geometric algebra, as I will briefly explain in the following. Technical details can
be found in (Stoica, 2017b)%.

The color degrees of freedom live in a complex 3-dimensional vector space denoted by 3.
The color gauge group is the group of linear transformations of 3 preserving a Hermitian inner
product, whose determinant is 1. The electromagnetic gauge symmetry can be represented on
3 as the complex phase, so a vector of 3 has a color and electric charge, equal by definition
with —%. The exterior algebra A *3 of 3 has 23 = 8 complex dimensions. The various exterior
powers /\ *3 are spanned by exterior products of the elements of a basis (g1, q2,q3) of 3, this
leading to a basis of /\ *3 which can be indexed binary by three bits to indicate the presence or
the absence of each of qy, g2, q3. The resulting basis of A ¥3 corresponds exactly to the colors
and electric charges of the electron antineutrino, the down quark, the up antiquark, and the
electron. Their antiparticles are represented by the exterior algebra A *3 of the conjugate or
dual space 3 of 3.

The direct sum of the vector spaces 3 and 3 is a complex 6-dimensional vector space 3 @ 3.

The following inner product is naturally defined on 3 @ 3, since 3 is the dual of 3:

(ul + uy, ug + uy) = % ( ug) + ug(uQ)) € C, (3)

where ui, ug € 3 and us, us € 3.

The inner product (3) determines a geometric algebra C/(3 @ 3), which is isomorphic to the
algebra of complex 8 x 8 matrices, and has 26 = 64 complex dimensions. It can also be written
as CL(3 ® 3) = A\*3® A *3. Therefore, its basis consists of the 26 = 64 Clifford products of
1, 92, 93, 41, gb, s, and each element of this basis can be indexed binary by six bits.

=ZEESSS
LB Z2ZEEESSSES.
L2 S
% S
7/7/// *\\\\\
\
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A3 @ MA*3l =& Cl(3a3)

, ’ :":'””:
N == “§ ==/ 2

The 8-dimensional complex vector space . := C{(3 @ 3)qlqbd; is a left ideal of C{(3 @ 3),
that is, C{(3 @ 3).# = #. Any other left ideal .#’ C .# is either .# or {0}. Then, .# is
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minimal, and gives an irreducible representation of C/(3 @ 3). The spinors are the elements of
a minimal left ideal of the Clifford algebra.

By multiplying .# at right with elements of the basis of A *3, we get a total of eight minimal
left ideals, which form a canonical decomposition of C/(3 @ 3) into minimal left ideals. These
minimal left ideals correspond to the right colors and electric charges of leptons and quarks.

The Dirac algebra is identified with a subalgebra of C/(3 & 3). Its representation on each
of the eight minimal left ideals of C¢(3 @ 3) is reducible, resulting in two representations on
each ideal. In this representation, the Dirac spinors correspond to half-spinors of C/(3 & 3).
Consequently, each ideal contains the representation of a doublet of weakly interacting particles
and the corresponding singlets, each of the two particles being half-spinors of C/(3 @ 3).

The symmetries of C/(3 @ 3) are the electromagnetic and color gauge symmetries, and are
generated by operators constructed from the ladder operators q1, 92,93, 1, 42, ¢5°. Each ideal is
either colorless or has a definite color or anticolor. The electric charge is not identical on each
ideal, but it is identical on each half-ideal invariant to the action of the Dirac algebra. The
weak, electromagnetic, and color gauge groups act by the (spinorial) adjoint representation on
the algebra, and their generators are elements of C/(3 @& 3). As a result, the weak group acts
at left on each minimal left ideal, and the color gauge group at right, permuting therefore the
ideals according to the representations 1., 3., 1., 3..

In the matrix representation of C/(3 @ 3) shown below, the minimal left ideals correspond
to columns. The Dirac algebra, the Lorentz group, and the weak symmetry act by permuting
the rows according to the weak singlet and doublet representations 1,,, 2,,. The color symmetry
acts by permuting the columns according to the representations 1., 3., 1., 3..

1. 3. 1. 3.
4
Dirac, L
\
Lorentz
; 2.
Dirac,
< \
Lorentz
1,

This model combines a generation of leptons and quarks, and their antiparticles, in the
decomposition in minimal ideals of C¢(3 @ 3), reproducing their discrete properties, but also
the gauge symmetries of the Standard Model. It predicts a bare Weinberg angle 6y, given by
sin? Oy = 0.25. But there are some open questions. How do we get three generations of leptons
and quarks, and the continuous parameters of the Standard Model? Why this Clifford algebra
of a complex 6-dimensional vector space, where does this space come from? Can this come from
the geometry of spacetime, or we need some extra dimensions? If it has a geometric meaning,
does this lead to a geometric unification of the Standard Model with gravity? Can it help
quantizing gravity?

Will such a unification result in a single holomorphic field?°
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== Indra’s net

If the program whose first stages were described in the previous section will turn out to work and
solve the mentioned open problems, matter will be a unified field with values in a geometric
algebra, representing the leptons and quarks, and whose gauge degrees of freedom give the
interactions. Maybe we will find out that this Clifford algebra has a geometric meaning and is
related to the curvature in a way which gives the Einstein equation. Then, all physics will be
contained in this field. Since it’s dynamics is given by the Dirac operator, it may turn out to
be holomorphic in a sense which generalizes the complex holomorphic functions.

If this will turn out to be the case, then the information about the whole universe is encoded
at each point, in the higher order derivatives of the field at that point. So the state of the
universe, including the germs at all the other points of spacetime, is encoded in the germ at
each point of spacetime. Not only the field, but also spacetime itself emerges from each germ.

This resembles the metaphor of Indra’s net, or Indra’s pearls’.

When we move from one point to another the germ changes, but the solution is the same.
So there is a group which transforms each germ into another when moving from point to point.
This group’s orbits form an equivalence relation, and we can take as fundamental its equivalence
classes. If there is a multiverse, it can be the collection of all (equivalence classes of) germs.
The entire state of the universe is therefore encoded in a single class of germs.

Susan Sontag said “Time exists in order that everything doesn’t happen all at once ...
and space exists so that it doesn’t all happen to you.” (Sontag, 2007). But in this picture,
everything happens at the same point in space and time, in the germ, and is mirrored at any
other point. And there is no need for a mechanism to unfold the state of the universe out of
the germ, since the germ already contains everything that happens in the universe, including
the observer experiencing separation in space and the flow of time. Our experience unfolds
the germ, creating space and time, but the germ always remains enfolded, and we with our
experiences, and spacetime itself, are always enfolded inside it. No additional mechanism is
needed to unfold the germ, unfolding itself is part of the enfolded.

The idea that everything unfolds out of a germ may raise some questions about free-will,
which I discuss in the endnotes®.

Holomorphic fundamentalness may be a mathematically consistent basis for holism and the
holographic principle, but until we will have the unified theory of physics, it remains an exercise
of imagination.
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Notes

1 The dependence of the number of particles of the acceleration of the observer is called the
Unruh effect (Fulling, 1973; Davies, 1975; Unruh, 1976).

2 A general complex function which is analytic can be expanded in power series of both z
and z, but the holomorphic ones don’t depend on Zz, so the power series will contain only
powers of z.

3 The equations of physics are analytic, but this doesn’t ensure that the solutions are analytic
too. In the case of the Cauchy-Riemann equations, the functions satisfying it are complex
holomorphic, hence analytic. The Cauchy-Riemann equations generalize, for geometric
algebras, to the Dirac operator, but the equations of physics are inhomogeneous. For
example, the Dirac equation contains a mass term. But the Standard Model is invariant
to conformal transformations if we ignore the masses. The conformal symmetry is broken
by a Higgs-like mechanism, and masses appear. So maybe this inhomogeneity is not a
problem. But to be sure that after the generalization we still get something like holomorphic
functions, we will need first to find the unified theory.

4 Other unified models based on geometric algebras were previously proposed by (Chisholm
and Farwell, 1996) and (Trayling, 1999; Trayling and Baylis, 2001, 2004). These models
are different, although they are based on Clifford algebras isomorphic as algebras (but not
as Clifford algebras) with the one presented here, the geometric algebra C/g of the complex
6-dimensional vector space. The model presented here gives the right symmetries and spin
representations of fermions and quarks, and predicts a better value for the bare Weinberg
angle Oy given by sin? Oy = 0.25.

5 The generators of the color and electromagnetic gauge symmetries and the ladder operators
were previously used in a model based on the Dixon algebra R ® C ® H® O (Furey, 2015,
2016) and in (Giinaydin and Gursey, 1974; Barducci et al., 1977; Casalbuoni and Gatto,
1979). Also the ladder operators appear in the Spin(10) unified model (Baez, J and Huerta,
J, 2010). These models are completely different, Furey’s model using only a minimal left
and a minimal right ideals for colors and charge, the other degrees of freedom coming from
tensoring with quaternions, and resulting in a Clifford algebra C¢5. The model presented
here only needs the algebra C/g, using all of eight ideals to represent the leptons and quarks.

6 The Dirac equation differs from the Cauchy-Riemann equations by the mass term. Without
the mass terms, the Standard Model is conformally invariant. Some results show that the

Higgs mechanism can be obtained from conformal gravity by geometric means (Mannheim,
2012).

7 Indra’s net, mentioned in various Buddhist texts like the Avatamsaka Sutra, was described
in Cook (1977), chapter 1, page 2:

“We may begin with an image which has always been the favorite Hua-yen method
of exemplifying the manner in which things exist. Far away in the heavenly abode
of the great god Indra, there is a wonderful net which has been hung by some cun-
ning artificier in such a manner that stretches out infinitely in all directions. In
accordance with the extravagant tastes of deities, the artificier has hung a single
glittering jewel in each “eye” of the net, and since the net itself is infinite in dimen-
sion, the jewels are infinite in number. There hang the jewels, glittering like stars
of the first magnitude, a wonderful sight to behold. If we now arbitrarily select
one of these jewels for inspection and look closely at it, we will discover that in
its polished surface there are reflected all the other jewels in the net, infinite in
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number. Not only that, but each of the jewels reflected in this one jewel is also
reflecting all the other jewels, so that there is an infinite reflecting process occur-
ring. The Hua-yen school has been fond of this image, mentioned many times in its
literature, because it symbolizes a cosmos in which there is an infinitely repeated
interrelationship among all the members of the cosmos. This relationship is said to
be one of simultaneous mutual identity and mutual intercausality”.

8 This image of the entire universe being enfolded in a spaceless and timeless point may seem
like a limitation of our freedom, even more than determinism seems to limit our freedom to
those believing that the two are incompatible. Quantum mechanics seems to indicate that
at least during the measurement the cold determinism of the Schrédinger equation may be
broken by a discontinuous collapse in an indeterministic way, which is considered by some
as allowing free-will.

But by breaking the evolution equation, the existence of discontinuous collapse would
mean that physical laws otherwise always and everywhere valid are broken during quantum
measurements, and also the conservation laws (Stoica, 2017a). In this case not even the
laws can be fundamental. But this is not necessarily true, since it is possible that the
wavefunction collapse happens by unitary evolution alone (Stoica, 2016). However, if the
collapse happens by unitary evolution alone, then the past state of the quantum systems
have to be very special, in order to obtain dynamically the appearance of collapse. This
alternative requires thus very fine-tuned initial conditions, which seem to qualify it as
superdeterministic. However, the block spacetime view, which is timeless, provides another
way to see this: quantum measurements impose some constraints on the solution, and one
should consider as physically possible only the globally consistent solutions (Stoica, 2015).

The idea of germs may help even more restoring the physical law, suggesting by its
spaceless and timeless view that it is not as if the wavefunction converges in a predetermined
way in order to collapse, but rather that the germ at the position where the collapse happens
unfolds, and the wavefunction with it, into the future but also into the past.

A universe unfolding from a timeless and spaceless germ by analytic continuation imposes
much stricter constraints than determinism and even than superdeterminism. Then is it
possible to have free-will? It seems as if our choices are completely determined by the germ.
If we want to turn the picture upside-down and consider that our choices also determine
the germ, then would it be possible that our local actions determine the germ here, and
by this the state of the universe everywhere? Doesn’t this conflict with what other people
do elsewhere, or with their will? This is not necessarily the case, because human agents
can only control the germ up to some degree. We can choose what to measure, but not the
outcome of the measurement, so we can’t determine the complete wavefunction. The germ
at a point is the collection of the derivatives of the universal function at that point, but these
limitations only allow us to determine them up to some degree, and only approximately.
Another agent may determine them to some degree in another place. Yet it is possible for
the complete information about the derivatives to fit the choices of both agents. Or maybe
each agent is free, but if their choices conflict with each other, then the germs of the two
agents turn out to unfold in distinct universes, so again their choices don’t conflict with
each other.

For the same reasons you can’t be omniscient by fully knowing the germ.

Anyway, even if there is a way to fully control a germ, you are also enfolded in the germ,
and the germ is the same everywhere in a different form, so there could be no conflicting
action at the fundamental level.
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