Differential Mystery of Accelerated Relativity

The differential equation of the accelerating electrons gives a linear potential change in the reference frame of the moving charges. The mysterious property of the matter that the electric potential difference is self maintained by the accelerating electrons in the electric current gives a clear explanation to the basic sentence of the relativity that is the velocity of the light is the maximum velocity of the electromagnetic matter. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Relativistic Quantum Theories.

The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the electromagnetic inertia, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

Contents

Preface ... 2
Simple Experiment .. 2
Uniformly accelerated electrons of the steady current .. 3
Magnetic effect of the decreasing U electric potential .. 4
Magnetic induction .. 6
The Classical Relativistic effect .. 7
Electromagnetic inertia and mass .. 7
 Electromagnetic Induction ... 7
 Relativistic change of mass ... 7
Electron – Proton mass rate ... 7
Planck Distribution Law ... 8
 The Graviton .. 8
Preface
Surprisingly nobody found strange that by theory the electrons are moving with a constant velocity in the stationary electric current, although there is an accelerating force \(F = q E \), imposed by the \(E \) electric field along the wire as a result of the \(U \) potential difference. The accelerated electrons are creating a charge density distribution and maintaining the potential change along the wire. This charge distribution also creates a radial electrostatic field around the wire decreasing along the wire. The moving external electrons in this electrostatic field are experiencing a changing electrostatic field causing exactly the magnetic effect, repelling when moving against the direction of the current and attracting when moving in the direction of the current. This way the \(A \) magnetic potential is based on the real charge distribution of the electrons caused by their acceleration, maintaining the \(E \) electric field and the \(A \) magnetic potential at the same time.

The mysterious property of the matter that the electric potential difference is self maintained by the accelerating electrons in the electric current gives a clear explanation to the basic sentence of the relativity that is the velocity of the light is the maximum velocity of the electromagnetic matter. If the charge could move faster than the electromagnetic field, this self maintaining electromagnetic property of the electric current would be failed.

More importantly the accelerating electrons can explain the magnetic induction also. The changing acceleration of the electrons will create a \(-E\) electric field by changing the charge distribution, increasing acceleration lowering the charge density and decreasing acceleration causing an increasing charge density.

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. If the mass is electromagnetic, then the gravitation is also electromagnetic effect caused by the accelerating Universe! The same charges would attract each other if they are moving parallel by the magnetic effect.

Simple Experiment
Everybody can repeat my physics teacher’s - Nándor Toth - middle school experiment, placing aluminum folios in form V upside down on the electric wire with static electric current, and
seeing them open up measuring the electric potential created by the charge distribution, caused by the acceleration of the electrons.

![Figure 1. Aluminium folios shows the charge distribution on the electric wire](image)

He wanted to show us that the potential decreasing linearly along the wire and told us that in the beginning of the wire it is lowering harder, but after that the change is quite linear.

You will see that the folios will draw a parabolic curve showing the charge distribution along the wire, since the way of the accelerated electrons in the wire is proportional with the square of time. The free external charges are moving along the wire, will experience this charge distribution caused electrostatic force and repelled if moving against the direction of the electric current and attracted in the same direction – the magnetic effect of the electric current.

Uniformly accelerated electrons of the steady current

In the steady current \(I = \frac{dq}{dt} \), the \(q \) electric charge crossing the electric wire at any place in the same time is constant. This does not require that the electrons should move with a constant \(v \) velocity and does not exclude the possibility that under the constant electric force created by the \(E = -\frac{dU}{dx} \) potential changes the electrons could accelerating.

If the electrons accelerating under the influence of the electric force, then they would arrive to the \(x = \frac{1}{2} at^2 \) in the wire. The \(\frac{dx}{dt} = at \), means that every second the accelerating \(q \) charge will take a linearly growing length of the wire. For simplicity if \(a=2 \) then the electrons would found in the wire at \(x = 1, 4, 9, 16, 25 \ldots \), which means that the \(dx \) between them should be \(3, 5, 7, 9 \ldots \), linearly increasing the volume containing the same \(q \) electric charge. It means that the density of the electric charge decreasing linearly and as the consequence of this the \(U \) field is decreasing linearly as expected: \(-\frac{dU}{dx} = E = \text{const.}\)
Figure 2.) The accelerating electrons created charge distribution on the electric wire

This picture remembers the Galileo's Slope of the accelerating ball, showed us by the same teacher in the middle school, some lectures before. I want to thank him for his enthusiastic and impressive lectures, giving me the associating idea between the Galileo's Slope and the accelerating charges of the electric current.

We can conclude that the electrons are accelerated by the electric U potential, and with this accelerated motion they are maintaining the linear potential decreasing of the U potential along they movement. Important to mention, that the linearly decreasing charge density measured in the referential frame of the moving electrons. Along the wire in its referential frame the charge density lowering parabolic, since the charges takes way proportional with the square of time.

The decreasing U potential is measurable, simply by measuring it at any place along the wire. One of the simple visualizations is the aluminum foils placed on the wire opening differently depending on the local charge density. The static electricity is changing by parabolic potential giving the equipotential lines for the external moving electrons in the surrounding of the wire.

Magnetic effect of the decreasing U electric potential

One q electric charge moving parallel along the wire outside of it with velocity v would experience a changing U electric potential along the wire. If it experiencing an emerging potential, it will repel the charge, in case of decreasing U potential it will move closer to the
wire. This radial electric field will move the external electric charge on the parabolic curve, on
the equipotential line of the accelerated charges of the electric current. This is exactly the
magnetic effect of the electric current. A constant force, perpendicular to the direction of the
movement of the matter will change its direction to a parabolic curve.

Figure 3.) Concentric parabolic equipotential surfaces around the electric wire causes
the magnetic effect on the external moving charges

Considering that the magnetic effect is $F = qv \times B$, where the B is concentric circle around the
electric wire, it is an equipotential circle of the accelerating electrons caused charge distribution.
Moving on this circle there is no electric and magnetic effect for the external charges, since
$v \times B = 0$. Moving in the direction of the current the electric charges crosses the biggest potential
change, while in any other direction – depending on the angle between the current and velocity
of the external charge there is a modest electric potential difference, giving exactly the same
force as the $v \times B$ magnetic force.

Getting the magnetic force from the $F = dp/dt$ equation we will understand the magnetic field
velocity dependency. Finding the appropriate trajectory of the moving charges we need simply
get it from the equipotential lines on the equipotential surfaces, caused by the accelerating
charges of the electric current. We can prove that the velocity dependent force causes to move
the charges on the equipotential surfaces, since the force due to the potential difference
according to the velocity angle – changing only the direction, but not the value of the charge's velocity.

Moving on the parabolic equipotential line gives the same result as the constant force of gravitation moves on a parabolic line with a constant velocity moving body.

Necessary to mention that the magnetic vector potential is proportional with \(\mathbf{a} \), the acceleration of the charges in the electric current. Also the magnetic vector potential gives the radial parabolic electric potential change of the charge distribution due to the acceleration of electric charges in the electric current.

Magnetic induction

Increasing the electric current \(I \) causes increasing magnetic field \(\mathbf{B} \) by increasing the acceleration of the electrons in the wire. If the acceleration of electrons is growing, than the charge density \(\frac{dQ}{dl} \) will decrease in time, creating a negative electric field. Since the resistance of the wire is constant, only increasing \(U \) electric potential could cause an increasing electric current \(I = U/R = dQ/dt \).

Necessary to mention that decreasing electric current will decrease the acceleration of the electrons, causing increased charge density and \(\mathbf{E} \) positive field.

The electric field is a result of the geometric change of the \(U \) potential and the timely change of the magnetic potential:

\[
\mathbf{E} = - \frac{d\mathbf{A}}{dt} - \frac{dU}{dr}
\]

\[
\mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}
\]

The acceleration of the electric charges proportional with the magnetic vector potential in the electric current and also their time dependence are proportional as well. Since the magnetic vector potential is appears in the equation, the proportional \(\mathbf{a} \) acceleration will satisfy the same equation.

Since increasing acceleration of charges in the increasing electric current the result of increasing potential difference, creating a decreasing potential difference, the electric and magnetic vector potential are changes by the next wave - function equations:

\[
\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} - \nabla^2 \varphi = \frac{\rho}{\varepsilon_0}
\]

\[
\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J}
\]
The simple experiment with periodical changing \(U \) potential and \(I \) electric current will move the aluminium folios with a moving wave along the wire.

The timely change of the A vector potential or the changing acceleration of the charges will produce a negative electric field.

The Classical Relativistic effect

The moving charges are self maintain the electromagnetic field locally, causing their movement and this is the result of their acceleration under the force of this field. In the classical physics the charges will distributed along the electric current so that the electric potential lowering along the current, by linearly increasing the way they take every next time period because this accelerated motion.

The ether problem resolution is the matter as diffraction patterns of the electromagnetic oscillations. Also the accelerating charges (matter) maintaining the accelerating force with linearly changing potential is the secret of the relativity. Because of this the Michelson-Morley experiment doesn't show an existence of the ether, the electromagnetic oscillations always creates diffraction patterns, electrodynamics' matter, functioning as the ether. [1]

Electromagnetic inertia and mass

Electromagnetic Induction

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass

The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

Electron – Proton mass rate

The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force. [1]

There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level.
and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Planck Distribution Law
The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry.

The Planck distribution law is temperature dependent and it should be true locally and globally. I think that Einstein’s energy-matter equivalence means some kind of existence of electromagnetic oscillations enabled by the temperature, creating the different matter formulas, atoms, molecules, crystals, dark matter and energy.

One way dividing the proton to three parts is, dividing his oscillation by the three direction of the space. We can order $\frac{1}{3} e$ charge to each coordinates and $\frac{2}{3} e$ charge to one plane oscillation, because the charge is scalar. In this way the proton has two $+\frac{2}{3} e$ plane oscillation and one linear oscillation with $-\frac{1}{3} e$ charge. The colors of quarks are coming from the three directions of coordinates and the proton is colorless. [1]

The Graviton
In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor (compared to electromagnetism’s spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [2]

Conclusions
Needless to say that the accelerating electrons of the steady stationary current are a simple demystification of the magnetic field, by creating a decreasing charge distribution along the wire, maintaining the decreasing U potential and creating the \vec{A} vector potential experienced by the electrons moving by \vec{v} velocity relative to the wire. This way it is easier to understand also
the time dependent changes of the electric current and the electromagnetic waves as the resulting fields moving by \(c \) velocity.

It could be possible something very important law of the nature behind the self maintaining \(F \) accelerating force by the accelerated electrons. The accelerated electrons created electromagnetic fields are so natural that they occur as electromagnetic waves traveling with velocity \(c \). It shows that the electric charges are the result of the electromagnetic waves diffraction.

One of the most important conclusions is that the electric charges are moving in an accelerated way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called spin, since they need at least an intrinsic acceleration to make possible they movement. The bridge between the classical and quantum theory is based on this intrinsic acceleration of the spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the electric charges and the photon makes certain that they are both sides of the same thing. Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the physical interactions.

The electric currents causing self maintaining electric potential is the source of the special and general relativistic effects. The Higgs Field is the result of the electromagnetic induction. The Graviton is two photons together. [3]

References
[1] 3 Dimensional String Theory

 Author: George Rajna
 Publisher: Academia.edu
 http://www.academia.edu/3834454/3_Dimensional_String_Theory

 Author: David Atwood, Shaouly Bar-Shalom, Amarjit Soni

[3] Higgs Field and Quantum Gravity

 Author: George Rajna
 http://www.academia.edu/4158863/Higgs_Field_and_Quantum_Gravity