The Biology of Consciousness

Christof Koch

Allen Institute for Brain Science

1/8/2014
Cartesian Certainty

Je pense, donc je suis

or, in modern language,

I am conscious, therefore I am
Difference between brains and other things
Difference between brains and other things

• There are external observables (sensory-motor behavior, neurons, action potentials, molecules etc) - third person account
• However, there is also an unique internal perspective to a brain - first person account
The passage from the physics of the brain to the corresponding facts of consciousness is unthinkable as a result of mechanics. Granted that a definite thought, and a definite molecular action in the brain, occur simultaneously; we do not possess the intellectual organ, nor apparently any rudiment of the organ, which would enable us to pass, by a process of reasoning, from the one phenomenon to the other. They appear together, but we do not know why. Were our minds and senses so expanded, strengthened, and illuminated, as to enable us to see and feel the very molecules of the brain; were we capable of following all their motions, all their groupings, all their electric discharges, if such there be; and were we intimately acquainted with the corresponding states of thought and feeling, we should be as far as ever from the solution of the problem, “How are these physical processes connected with the facts of consciousness?” The chasm between the two classes of phenomena would still remain intellectually impassable. Let the consciousness for love, for example, be associated with a right-handed spiral motion of the molecules of the brain, and the consciousness of hate with a left-handed spiral motion. We should then know, when we love, that the motion is in one direction, and, when we hate, that the motion is in the other; but the “WHY?” would remain as unanswerable as before.

John Tyndall (1886)
The really hard problem of consciousness is the problem of experience. Why is it that when our [brains] engage in visual and auditory information-processing, we have visual or auditory experience...?

David Chalmers (1995)
What do we know about C?

- C is associated with some complex, adaptive, biological networks (not immune system nor enteric nervous system)
- C does not require behavior
- C does not require emotions
- C does not require language nor self-consciousness
- C does not require long-term memory
- C does not require selective attention
- C can occur in one cerebral hemisphere
- Destruction of localized brain regions interferes with specific content of C
Many Brains Inside Your Head

Many - if not most - behaviors occur in the absence of conscious sensations, or consciousness occurs after the fact:

- Spinal reflexes
- Posture adjustments
- Any over-trained routine: Shaving, dressing, tennis, video games, keyboard typing, driving, rock-climbing, dancing
- Reaching and grabbing
- Generating speech
- Dissociation between what the eyes see and conscious perception
- High-level decision making (e.g. choice blindness)
Behavioral Correlates of Consciousness (BCC)

Empirically, certain behaviors are associated with consciousness

- Purposeful behavior in response to spoken commands
- Glasgow Coma Scale (3-15)
- Meaningful linguistic contents
- Non-stereo-typed, temporal-delayed sensory-motor behavior
- Meta-cognition
Continuous Flash Suppression

Tsuchiya & Koch (2005)
Looking at invisible nudes

Jiang et al. (2006)
Search for the minimal neuronal mechanisms jointly sufficient for any one conscious perception, the neuronal correlates of consciousness (NCC)

For every conscious percept, there will be a NCC

Crick & Koch (Nature 1995)
The retina is not part of the NCC
The NCC does not reside in primary visual cortex
Cerebellum

- 69 out of 86 billion neurons are in the cerebellum
- Main deficit of cerebellar lesions are ataxia, slurred speech and unsteady gait
- The cerebellum is not a significant part of the NCC
A NCC in Frontal-Parietal Cortical Structures

Dehaene & Changeux (2012)
Consciousness in Other Mammals

- Similarity of behavior
- Similarity of brain architecture
- Close evolutionary kinship
- The main specialization of *homo sapiens* is a highly developed self-consciousness and language
Temporal Cortex
Hard Calls

Brain “islands” in a vegetative subject

Fetus, pre-term & newborn infant

Ketamine anesthesia

Sleepwalking

Octopus

Apple Siri
More Hard Questions

Why not the cerebellum?
Why not afferent pathways?
Why not efferent pathways?
Why not cortico-subcortico-cortical loops?

Why not the cortex during deep sleep?
Why not the cortex during seizures?
Going from BCC/NCC to Consciousness is hard; so let’s go the opposite way
From Phenomenology to Mechanisms, and Back: An Integrated Information Theory of Consciousness

Larissa Albantakis
David Balduzzi
Melanie Boly
Chiara Cirelli
Daniela Dentico
Fabio Ferrarelli
Olivia Gossseries
Atif Hashmi
Erik Hoel
Matteo Mainetti
Marcello Massimini
Andy Nere
Yuval Nir
Masafumi Oizumi
Umberto Olcese
Ben Shababo
Francesca Siclari

Chris Adami
Mike Alkire
Ruth Benca
Richie Davidson
Tony Hudetz
Christof Koch
Steven Laureys
Randy McIntosh
Bob Pearce
Brad Postle
Olaf Sporns
Barry Van Veen

Support: NIH Director’s Pioneer Award, NIMH, NINDS, DARPA, Paul Allen Foundation, McDonnell Foundation, University of Wisconsin
Disclosures: Consultant for Philips

Giulio Tononi
Check your biases

- Consciousness = experience rather than awareness of environment, of self, or reflective awareness
- IIT starts from consciousness itself (phenomenology) rather than its behavioral correlates (BCC) / neural correlates (NCC)
- Information is intrinsic (differences that make a difference within a system): how a set of mechanisms in a state constrains, i.e. informs, its past and future states rather than extrinsic (Shannon): how an observer can decode inputs from outputs of a channel
- Integration = irreducibility: what the whole does above its parts rather than convergence onto a place
Axioms:

Identifying the essential properties of consciousness
Experience exists (intrinsically, independent of external observers)
Experience is **structured** (it has **many aspects**)

Composition
Experience is differentiated (one out of many): it is what it is by differing in its particular way from many others.
Experience is **unified** (it is “one”): it cannot be reduced to non-interdependent components
Experience is **unique** (it is **only one**), in content and spatio-temporal grain: it is not a superposition of multiple experiences, with less or more content, flowing at faster or slower speed at once.
Postulates:

Identifying the requisites for the physical substrate of consciousness
Experience exists (intrinsically, independent of external observers)
Experience is generated by a **system of mechanisms**: to exist, the mechanisms must have cause-effect power ("**differences that make a difference**") within the system itself (**intrinsically**).
Experience is **structured** (it has **many aspects**).
The system can be structured:
Subsets of the system can contribute specific aspects of experience
Experience is differentiated (one out of many):
it is what it is by differing in its particular way from many others
The system must be differentiated: when it is in a particular state, its mechanisms must constrain its past and future states in a particular way – specifying a cause-effect structure, made up of cause-effect repertoires specified by individual mechanisms.
Experience is **unified** (it is “one”): it cannot be reduced to non-interdependent components
The system must be **unified:** it must be **irreducible** (by a minimum partition MIP) to non-interdependent sub-systems ($\Phi > 0$)
The system must be **unified**: it must be **irreducible** (by a minimum partition MIP) to non-interdependent sub-systems ($\Phi > 0$) and each mechanism must be irreducible to sub-mechanisms ($\phi > 0$).
Experience is unique (it is only one), in content and spatio-temporal grain: it is not a superposition of multiple experiences, with less or more content, flowing at faster or slower speed at once.
The system must be **unique** over elements and spatio-temporal grain: it must specify **only one** cause-effect structure, the one that is **maximally irreducible** (Φ_{max}).

Based on Oizumi, Albantakis, and Tononi, submitted
The system must be **unique** over elements and spatio-temporal grain: it must specify **only one** cause-effect structure, the one that is **maximally irreducible** (Φ_{max}) and each mechanism must specify only one cause-effect repertoire (φ_{max}).
A quale

Quale

$\Phi_{\text{max}} = 1.92$

Complex

The maximally irreducible conceptual structure generated by a complex

based on Oizumi, Albantakis, and Tononi, submitted

Concept

$\varphi_{\text{max}} = 0.5$
Identity:
An experience is a maximally irreducible conceptual structure

Quale
$\Phi_{\text{max}} = 1.92$

Quantity: Irreducibility of the conceptual structure (Φ_{max})
Quality: “Shape” of the quale in qualia space (“constellation”)
Integrated Information Theory

• Corollaries
• Predictions
• Explanations
• Extrapolations
IIT: some corollaries

\[p = 0.25 \]

past

future
A system can condense into major and minor complexes and their residual interactions based on Oizumi, Albantakis, and Tononi, submitted.
Qualia generated by modular, homogeneous, and specialized networks

(A) Modular network
COPYS and ANDs

(B) Homogeneous network
all-to-all connected ORs

(C) Specialized network
Majority

Core Concepts: 2
1. A\sup{c}/B\sup{p}, \phi_{\text{Max}}=0.500
2. B\sup{c}/A\sup{p}, \phi_{\text{Max}}=0.500

Core Concepts: 5
1. A\sup{c}/ABCDE\sup{p}, \phi_{\text{Max}}=0.0161
2. B\sup{c}/ABCDE\sup{p}, \phi_{\text{Max}}=0.0161
3. C\sup{c}/ABCDE\sup{p}, \phi_{\text{Max}}=0.0161
4. D\sup{c}/ABCDE\sup{p}, \phi_{\text{Max}}=0.0161
5. E\sup{c}/ABCDE\sup{p}, \phi_{\text{Max}}=0.0161

Core Concepts: 30
1. A\sup{c}/CDE\sup{p}, BCD\sup{f}, \phi_{\text{Max}}=0.25
2. B\sup{c}/ADE\sup{p}, CDE\sup{f}, \phi_{\text{Max}}=0.25
3. C\sup{c}/ABE\sup{p}, ADE\sup{f}, \phi_{\text{Max}}=0.25
4. D\sup{c}/ABC\sup{p}, ABE\sup{f}, \phi_{\text{Max}}=0.25
5. E\sup{c}/BCD\sup{p}, ABC\sup{f}, \phi_{\text{Max}}=0.25
6. AB\sup{c}/ACE\sup{p}, CD\sup{f}, \phi_{\text{Max}}=0.2
7. AC\sup{c}/ABCDE\sup{p}, \phi_{\text{Max}}=0.2
Consciousness can be graded

$\Phi_{\text{Max}} = 10.56$

$\Phi_{\text{Max}} = 3.22$

$\Phi_{\text{Max}} = 0.19$

$\Phi = 0.19$

$\Phi = 0.19$

$\Phi = 0.19$

$\Phi = 0.03$

0.3 noise

0.48 noise
Inactive systems can be conscious

\[\varphi^{\text{Max}}(P, F \mid X = s_0) \]

Based on Oizumi, Albantakis, and Tononi, submitted
Simple systems can be conscious (but they have little quality): a “minimally conscious” photodiode

(A) A minimally conscious photodiode

(B) Mode of operation
 Strong light switches D on.

 t-2

 t-1

 t-0

(C) Quale

(D) Same quale, no quality
 A minimally conscious photodiode

 A minimally conscious blue detector

 A minimally conscious thermistor

based on Oizumi, Albantakis, and Tononi, submitted
Complicated systems can be unconscious: feed-forward “zombie” systems do not generate consciousness.

\[
\Phi^{\text{Max}} = 0
\]

Feed-forward system

Extrinsic definition of a system

based on Oizumi, Albantakis, and Tononi, submitted
Conscious and unconscious systems can be functionally equivalent

\[\Phi_{\text{Max}} = 0.79 \]

17 concepts

\[\Phi_{\text{Max}} = 0, \text{ no concepts} \]
A complex can have ports in and ports out from and to the environment, but its qualia are ‘solipsistic’ (self-generated, self-referential, holistic)
IIT: some predictions

From theory to practice: Evaluating integrated information using TMS and hd-EEG during wake and sleep

Massimini et al., Science, 2005
Wakefulness

TMS

100 msec

0 ms

TMS
Wakefulness

Slow Wave Sleep

TMS

0 ms

TMS

100 msec

TMS

0 ms
Like consciousness, information integration is high in wake, breaks down in slow wave sleep, and returns during REM sleep.
Towards a Consciousness – Meter: “zap and zip”

A. Time course of TMS-hdEEG responses
B. Voltage maps
C. Current sources
D. Significant sources (nonparametric)
E. Binarized matrix

Perturbational Complexity Index (PCI), a practical measure of information integration using TMS (“zapping”) computed using Lempel-Ziv encoding of hd-EEG sources time series (“zipping”)

(Casali et al., Neuroimage 2010, Science TM, 2013)
PCI is sensitive to the complexity (algorithmic compressibility) of the responses to TMS.
Separating higher from lower levels of consciousness

Casali et al., Science TM, 2013
Separating higher from lower levels of consciousness

Casali et al., Science TM, 2013
The Biology of Consciousness

Christof Koch

Allen Institute for Brain Science

1/8/2014
From phenomenology to mechanisms, and back
Explanations

Why not the cerebellum?
Why not afferent pathways?
Why not efferent pathways?
Why not cortico-subcortico-cortical loops?

Why not the cortex during deep sleep?
Why not the cortex during a seizure?
Explanations

Cortical system
Inhomogeneous network, functional specialization and integration

Cerebellum
Modular organization

Cortical system during deep sleep / anesthesia/ seizures
Homogeneous network

Afferent pathways

Efferent pathways

Cortico-subcortical loop
Newborn / 1 year old

Ketamine anesthesia

Brain “islands” in a vegetative subject

Sleepwalking

Octopus

Apple Siri
Computational Systems

(A) Integrated system

Output:
\[O_1 \]
\[O_2 \]

\[\phi^{\text{Max}} = 0.76 \]
\[\text{17 concepts} \]

Input:
\[l_1 \]
\[l_2 \]

(B) Feed-forward system

Output:
\[O_1 \]
\[O_2 \]

\[\phi^{\text{Max}} = 0, \text{no concepts} \]

Input:
\[l_1 \]
\[l_2 \]
Which systems are not conscious (or only minimally)

- Dumb/simple system
- Aggregate systems are not conscious above and beyond the consciousness of their components
- Feed-forward computational systems
- Computer simulations of brains - Their consciousness relates to the cause-effect repertoire of the underlying hardware instantiating a Turing Machine