THE GROUP FIELD THEORY APPROACH TO QUANTUM GRAVITY:
A QFT FOR THE MICROSTRUCTURE OF SPACETIME

Daniele Oriti

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Golm, Germany, EU

FQXI conference, Ponta Delgada, 10/07/2009
Quantum Gravity as a QFT for the “Atoms of Space”?

- Main lesson from GR: "Gravity is spacetime geometry", thus spacetime is itself a physical system
- Quantum Gravity not so much a quantization of GR, but a microscopic quantum theory of the spacetime structure (“atomic theory of space”)
- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,…) → a QFT for quantum gravity?
- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry and topology?) → background independence!
 - it can be only be a QFT on some auxiliary, internal or “meta-space”
- a QFT of what? what are the fundamental quanta?
 - quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space)
Quantum Gravity as a QFT for the “Atoms of Space”?

- Main lesson from GR: “Gravity is spacetime geometry”, thus spacetime is itself a physical system

- Quantum Gravity not so much a quantization of GR, but a microscopic quantum theory of the spacetime structure (“atomic theory of space”)

- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,...) → a QFT for quantum gravity?

- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry *and* topology?) → background independence!
 - it can be only be a QFT on some auxiliary, internal or “meta-space”

- a QFT of what? what are the fundamental quanta?
 - quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space)
Quantum Gravity as a QFT for the “Atoms of Space”?

- Main lesson from GR: ”Gravity is spacetime geometry”, thus spacetime is itself a physical system
- Quantum Gravity not so much a quantization of GR, but a microscopic quantum theory of the spacetime structure (“atomic theory of space”)
- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,...) → a QFT for quantum gravity?
- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry and topology?) → background independence!
 - It can be only be a QFT on some auxiliary, internal or “meta-space”
- A QFT of what? what are the fundamental quanta?
 - Quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space)
Quantum Gravity as a QFT for the “Atoms of Space”?

- Main lesson from GR: "Gravity is spacetime geometry", thus spacetime is itself a physical system
- Quantum Gravity not so much a quantization of GR, but a microscopic quantum theory of the spacetime structure ("atomic theory of space")
- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,...) → a QFT for quantum gravity?
- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry and topology?) → background independence!
 - it can be only be a QFT on some auxiliary, internal or "meta-space"
- a QFT of what? what are the fundamental quanta?
 - quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space)
Quantum Gravity as a QFT for the “Atoms of Space”?

- Main lesson from GR: "Gravity is spacetime geometry", thus spacetime is itself a physical system
- Quantum Gravity not so much a quantization of GR, but a microscopic quantum theory of the spacetime structure ("atomic theory of space")
- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,...) → a QFT for quantum gravity?
- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry and topology?) → background independence!
 - it can be only be a QFT on some auxiliary, internal or “meta-space”
- A QFT of what? what are the fundamental quanta?
 - quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space)
Quantum Gravity as a QFT for the “Atoms of Space”?

- Main lesson from GR: “Gravity is spacetime geometry”, thus spacetime is itself a physical system.
- Quantum Gravity not so much a quantization of GR, but a microscopic quantum theory of the spacetime structure (“atomic theory of space”).
- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,...) → a QFT for quantum gravity?
- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry and topology?) → background independence!
 - it can be only be a QFT on some auxiliary, internal or “meta-space”
- a QFT of what? what are the fundamental quanta?
 - quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space).
Quantum Gravity as a QFT for the “Atoms of Space”?

- Main lesson from GR: "Gravity is spacetime geometry", thus spacetime is itself a physical system

- **Quantum Gravity** not so much a quantization of GR, but a **microscopic quantum theory of the spacetime structure** ("atomic theory of space")

- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,...) → a QFT for quantum gravity?

- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry *and* topology?) → background independence!
 - it can be only be a QFT on some auxiliary, internal or “meta-space”

- a QFT of what? what are the fundamental quanta?
 - quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space)
Quantum Gravity as a QFT for the “Atoms of Space”?

- **Main lesson from GR:** "Gravity is spacetime geometry", thus spacetime is itself a physical system.

- **Quantum Gravity** not so much a quantization of GR, but a *microscopic quantum theory of the spacetime structure* (“atomic theory of space”)

- QFT is best formalism we have for microscopic physics (particle and atomic physics, condensed matter,...) → a QFT for quantum gravity?

- A QFT on which space?
 - QG should explain origin and properties of spacetime itself (geometry *and* topology?) → background independence!
 - it can be only be a QFT on some auxiliary, internal or “meta-space”

- A QFT of what? what are the fundamental quanta?
 - quanta of space itself! fundamental excitations of space around the vacuum (nothing = not even space)
GFT BASICS

- complex field ϕ over D copies of a group manifold G (e.g. Lorentz group, for QG): $\phi(g_1, \ldots, g_D) : G \times \ldots \times G \rightarrow \mathbb{C}$
- field can be expanded in modes j (irreducible representations of G)
- $\phi \simeq$ building block of quantum geometry - $(D-1)$-simplex or spin network vertex

Field action:

$$S_D(\phi, \lambda) = \int dg_i d\tilde{g}_i \phi(g_i)K(g_i, \tilde{g}_i^{-1})\phi(\tilde{g}_i) + \lambda \int dg_{ij} \phi(g_{1j}) \ldots \phi(g_{D+1j}) \mathcal{V}(g_{ij})$$

- combinatorics of arguments in \mathcal{V} reflects gluing of $(D-2)$-faces in a D-simplex,
 $K \rightarrow$ gluing of D-simplices along $(D-1)$-simplices
GFT Basics

- complex field ϕ over D copies of a group manifold G (e.g., Lorentz group, for QG): $\phi(g_1, \ldots, g_D) : G \times \ldots \times G \to \mathbb{C}$
- field can be expanded in modes j (irreducible representations of G)
- $\phi \simeq$ building block of quantum geometry - $(D-1)$-simplex or spin network vertex

Field action:

$$S_D(\phi, \lambda) = \int dg_i d\tilde{g}_i \phi(g_i) K(g_i, \tilde{g}_i^{-1}) \phi(\tilde{g}_i) + \lambda \int dg_{ij} \phi(g_{1j}) \ldots \phi(g_{D+1j}) \mathcal{V}(g_{ij})$$

Combinatorics of arguments in \mathcal{V} reflects gluing of $(D-2)$-faces in a D-simplex, $K \rightarrow$ gluing of D-simplices along $(D-1)$-simplices
GFT BASICS

- **Complex field** ϕ over D copies of a group manifold G (e.g. Lorentz group, for QG): $\phi(g_1, ..., g_D) : G \times ... \times G \rightarrow \mathbb{C}$

- Field can be expanded in modes j (irreducible representations of G)

- $\phi \simeq$ building block of quantum geometry - (D-1)-simplex or spin network vertex

- **Field action:**

 $S_D(\phi, \lambda) = \int dg_i d\tilde{g}_i \phi(g_i) \mathcal{K}(g_i, \tilde{g}_i^{-1}) \phi(\tilde{g}_i) + \lambda \int dg_{ij} \phi(g_{1j})... \phi(g_{D+1j}) \mathcal{V}(g_{ij})$

- Combinatorics of arguments in \mathcal{V} reflects gluing of (D-2)-faces in a D-simplex, $\mathcal{K} \rightarrow$ gluing of D-simplices along (D-1)-simplices
GFT BASICS

- complex field ϕ over D copies of a group manifold G (e.g. Lorentz group, for QG): $\phi(g_1, \ldots, g_D) : G \times \ldots \times G \rightarrow \mathbb{C}$
- field can be expanded in modes j (irreducible representations of G)
- $\phi \simeq$ building block of quantum geometry - $(D-1)$-simplex or spin network vertex

$\phi(g_1, g_2, g_3) \leftrightarrow \phi(j_1, j_2, j_3)$

Field action:

$$S_D(\phi, \lambda) = \int dg_i d\tilde{g}_i \phi(g_i) K(g_i, \tilde{g}_i^{-1}) \phi(\tilde{g}_i) + \lambda \int dg_{ij} \phi(g_{ij}) \ldots \phi(g_{D+1j}) V(g_{ij})$$

- combinatorics of arguments in V reflects gluing of $(D-2)$-faces in a D-simplex, $K \rightarrow$ gluing of D-simplices along $(D-1)$-simplices
GFT BASICS

- quantum theory: Feynman expansion of the partition function:

\[Z = \int \mathcal{D}\phi \, e^{iS[\phi]} = \sum_{\Gamma} \frac{\lambda^{N\Gamma}}{\text{sym}[\Gamma]} Z(\Gamma) \]

- Feynman diagrams Γ are simplicial complexes of arbitrary topology
- $Z(\Gamma) \sim$ discrete and algebraic (only group and representation theory) QG path integral $\rightarrow Z(\Gamma) \sim'' \int \mathcal{D}g_{\Gamma} \, e^{iS_{\Gamma}(g)}''$
- Quantum Gravity formulated as a sum over simplicial complexes (discrete spacetimes) of all topologies, as interaction processes, weighted by a simplicial gravity path integral formulated in algebraic terms
GFT BASICS

- quantum theory: Feynman expansion of the partition function:

\[Z = \int D\phi e^{iS[\phi]} = \sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\text{sym}[\Gamma]} Z(\Gamma) \]

- Feynman diagrams \(\Gamma \) are simplicial complexes of arbitrary topology

- \(Z(\Gamma) \simeq \) discrete and algebraic (only group and representation theory) QG path integral \(\rightarrow Z(\Gamma) \simeq'' \int Dg_{\Gamma} e^{iS_{\Gamma}(g)} '' \)

- Quantum Gravity formulated as a sum over simplicial complexes (discrete spacetimes) of all topologies, as interaction processes, weighted by a simplicial gravity path integral formulated in algebraic terms
GFT BASICS

- quantum theory: Feynman expansion of the partition function:

\[Z = \int \mathcal{D}\phi e^{iS[\phi]} = \sum_\Gamma \frac{\lambda^{N\Gamma}}{\text{sym}[\Gamma]} Z(\Gamma) \]

- Feynman diagrams \(\Gamma \) are simplicial complexes of arbitrary topology
- \(Z(\Gamma) \simeq \) discrete and algebraic (only group and representation theory) QG path integral \(\rightarrow Z(\Gamma) \simeq^\prime \int \mathcal{D}g_\Gamma e^{iS_\Gamma(g)} \)
- Quantum Gravity formulated as a sum over simplicial complexes (discrete spacetimes) of all topologies, as interaction processes, weighted by a simplicial gravity path integral formulated in algebraic terms
quantum theory: Feynman expansion of the partition function:

\[Z = \int \mathcal{D}\phi e^{iS[\phi]} = \sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\text{sym}[\Gamma]} Z(\Gamma) \]

Feynman diagrams Γ are simplicial complexes of arbitrary topology

$Z(\Gamma) \simeq$ discrete and algebraic (only group and representation theory) QG path integral \(\rightarrow \) $Z(\Gamma) \simeq'' \int \mathcal{D}g_{\Gamma} e^{iS_{\Gamma}(g)}''$

Quantum Gravity formulated as a sum over simplicial complexes (discrete spacetimes) of all topologies, as interaction processes, weighted by a simplicial gravity path integral formulated in algebraic terms
GFT can be common, unifying framework for various QG approaches:

- **Loop Quantum Gravity and spin foam models:**
 - GFT states are Spin Networks, the quantum states of geometry as identified by LQG
 - GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)

- **Quantum Regge Calculus**: a single GFT Feynman amplitude defines discrete QG path integral (related to Regge theory in various ways)

- **Dynamical Triangulations**: GFT describes QG (perturbatively) as sum over triangulations, weighted by discrete action

-plus ideas and tools from non-commutative geometry

At the same time, GFTs offer new tools, and a new perspective on continuum/classical approximation......
GFT can be common, unifying framework for various QG approaches:

- **Loop Quantum Gravity and spin foam models:**
 - GFT states are Spin Networks, the quantum states of geometry as identified by LQG
 - GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)

- **Quantum Regge Calculus:** a single GFT Feynman amplitude defines discrete QG path integral (related to Regge theory in various ways)

- **Dynamical Triangulations:** GFT describes QG (perturbatively) as sum over triangulations, weighted by discrete action

-plus ideas and tools from non-commutative geometry

At the same time, GFTs offer new tools, and a new perspective on continuum/classical approximation......
GFT can be a common, unifying framework for various QG approaches:

- **Loop Quantum Gravity and spin foam models:**
 - GFT states are Spin Networks, the quantum states of geometry as identified by LQG
 - GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)

- **Quantum Regge Calculus:** a single GFT Feynman amplitude defines discrete QG path integral (related to Regge theory in various ways)
- **Dynamical Triangulations:** GFT describes QG (perturbatively) as sum over triangulations, weighted by discrete action
-plus ideas and tools from non-commutative geometry

- At the same time, GFTs offer new tools, and a new perspective on continuum/classical approximation......
GFT can be a common, unifying framework for various QG approaches:

- **Loop Quantum Gravity and spin foam models:**
 - GFT states are Spin Networks, the quantum states of geometry as identified by LQG
 - GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)

- **Quantum Regge Calculus:** a single GFT Feynman amplitude defines discrete QG path integral (related to Regge theory in various ways)

- **Dynamical Triangulations:** GFT describes QG (perturbatively) as sum over triangulations, weighted by discrete action

-plus ideas and tools from non-commutative geometry

At the same time, GFTs offer new tools, and a new perspective on continuum/classical approximation......
GFT can be a common, unifying framework for various QG approaches:

- **Loop Quantum Gravity and spin foam models:**
 - GFT states are Spin Networks, the quantum states of geometry as identified by LQG
 - GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)

- **Quantum Regge Calculus:** a single GFT Feynman amplitude defines discrete QG path integral (related to Regge theory in various ways)

- **Dynamical Triangulations:** GFT describes QG (perturbatively) as sum over triangulations, weighted by discrete action

-plus ideas and tools from **non-commutative geometry**

- At the same time, GFTs offer new tools, and a new perspective on continuum/classical approximation......
Problem of the continuum in discrete QG: continuum geometry from atoms of space?
WHENCE THE CONTINUUM?

- **GFT** as fundamental (atomic) theory for the micro-structure of quantum space
- study the corresponding “many particle” regime
- ideas and tools from condensed matter theory and analog gravity models:
 - spacetime as a quantum condensate/liquid phase of fundamental discrete constituents + geometry as an emergent concept
- so:
 - study GFT phases ad phase transitions → geometrogenesis as GFT condensation?
 - continuum spacetime ≡ fluid phase, i.e. intertwiners/(D-1)-simplices condense to form a fluid-continuum
 - continuum geometry emerges in condensed phase, as the hydrodynamic variables in the (super)fluid phase of ordinary condensed matter systems
 - (modified) General Relativity from GFT hydrodynamics?
WHENCE THE CONTINUUM?

- **GFT as fundamental (atomic) theory for the micro-structure of quantum space**
- **study the corresponding “many particle” regime**
- **ideas and tools from condensed matter theory and analog gravity models:**
 - spacetime as a quantum condensate/liquid phase of fundamental discrete constituents + geometry as an emergent concept

SO:

- study GFT phases ad phase transitions \rightarrow geometrogenesis as GFT condensation?
- continuum spacetime \equiv fluid phase, i.e. intertwiners/(D-1)-simplices condense to form a fluid-continuum
- continuum geometry emerges in condensed phase, as the hydrodynamic variables in the (super)fluid phase of ordinary condensed matter systems
- (modified) General Relativity from GFT hydrodynamics?
WHENCE THE CONTINUUM?

- GFT as fundamental (atomic) theory for the micro-structure of quantum space
- study the corresponding “many particle” regime
- ideas and tools from condensed matter theory and analog gravity models:
 - spacetime as a quantum condensate/liquid phase of fundamental discrete constituents + geometry as an emergent concept
- so:
 - study GFT phases ad phase transitions → geometrogenesis as GFT condensation?
 - continuum spacetime ≡ fluid phase, i.e. intertwiners/(D-1)-simplices condense to form a fluid-continuum
 - continuum geometry emerges in condensed phase, as the hydrodynamic variables in the (super)fluid phase of ordinary condensed matter systems
 - (modified) General Relativity from GFT hydrodynamics?
WHENCE THE CONTINUUM?

- GFT as fundamental (atomic) theory for the micro-structure of quantum space
- study the corresponding “many particle” regime
- ideas and tools from condensed matter theory and analog gravity models:
 - spacetime as a quantum condensate/liquid phase of fundamental discrete constituents + geometry as an emergent concept
- so:
 - study GFT phases ad phase transitions \rightarrow geometrogenesis as GFT condensation?
 - continuum spacetime \equiv fluid phase, i.e. intertwiners/(D-1)-simplices condense to form a fluid-continuum
 - continuum geometry emerges in condensed phase, as the hydrodynamic variables in the (super)fluid phase of ordinary condensed matter systems
 - (modified) General Relativity from GFT hydrodynamics?
WHENCE THE CONTINUUM?

- GFT as fundamental (atomic) theory for the micro-structure of quantum space
- study the corresponding “many particle” regime
- ideas and tools from condensed matter theory and analog gravity models:
 - spacetime as a quantum condensate/liquid phase of fundamental discrete constituents + geometry as an emergent concept
- so:
 - study GFT phases ad phase transitions → geometrogenesis as GFT condensation?
 - continuum spacetime ≡ fluid phase, i.e. intertwiners/(D-1)-simplices condense to form a fluid-continuum
 - continuum geometry emerges in condensed phase, as the hydrodynamic variables in the (super)fluid phase of ordinary condensed matter systems
 - (modified) General Relativity from GFT hydrodynamics?
WHENCE THE CONTINUUM?

- GFT as fundamental (atomic) theory for the micro-structure of quantum space
- study the corresponding “many particle” regime
- ideas and tools from condensed matter theory and analog gravity models:
 - spacetime as a quantum condensate/liquid phase of fundamental discrete constituents + geometry as an emergent concept
- so:
 - study GFT phases ad phase transitions → geometrogenesis as GFT condensation?
 - continuum spacetime ≡ fluid phase, i.e. intertwiners/(D-1)-simplices condense to form a fluid-continuum
 - continuum geometry emerges in condensed phase, as the hydrodynamic variables in the (super)fluid phase of ordinary condensed matter systems
 - (modified) General Relativity from GFT hydrodynamics?
WHENCE THE CONTINUUM?

- GFT as fundamental (atomic) theory for the micro-structure of quantum space
- study the corresponding “many particle” regime
- ideas and tools from condensed matter theory and analog gravity models:
 - spacetime as a quantum condensate/liquid phase of fundamental discrete constituents + geometry as an emergent concept
- so:
 - study GFT phases ad phase transitions → geometrogenesis as GFT condensation?
 - continuum spacetime ≡ fluid phase, i.e. intertwiners/(D-1)-simplices condense to form a fluid-continuum
 - continuum geometry emerges in condensed phase, as the hydrodynamic variables in the (super)fluid phase of ordinary condensed matter systems
 - (modified) General Relativity from GFT hydrodynamics?
THE EMERGENCE OF CONTINUUM SPACETIME AND GEOMETRY

Microscopic GFT
(LQG, Simplicial QG)

\[\downarrow \]

Statistical GFT \rightarrow GFT fluid, GFT hydrodynamics

\[\downarrow \]

Effective continuum spacetime and geometry

(modified) GR

astrophysics, particle physics, cosmology
THE EMERGENCE OF CONTINUUM SPACETIME AND GEOMETRY

Microscopic GFT
(LQG, Simplicial QG)

↓

Statistical GFT → GFT fluid, GFT hydrodynamics

↓

Effective continuum spacetime and geometry

(modified) GR
astrophysics, particle physics, cosmology
THE EMERGENCE OF CONTINUUM SPACETIME AND GEOMETRY

Microscopic GFT
(LQG, Simplicial QG)

Statistical GFT \rightarrow GFT fluid, GFT hydrodynamics

Effective continuum spacetime and geometry

(modified) GR
astrophysics, particle physics, cosmology
MESSAGES:

- Quantum Space could be understood as a “background independent condensed matter system”
- Group Field Theories are a candidate microscopic description of the properties and dynamics of the atoms of space, in simplicial, algebraic language
- GFTs are **unifying** framework for discrete approaches to quantum gravity
- **continuum spacetime is a fluid of GFT quanta**, and geometry emerges as a collective, effective variable in the fluid phase
- **(modified) GR emerges from GFT hydrodynamics**
- in progress........................so.........stay tuned!