Atomic and molecular spectra as probes for fundamental constants

Mikhail Kozlov

Petersburg Nuclear Physics Institute

Azores, 10 July 2009
There are three fundamental constants, which influence atomic and molecular spectra:

- Fine structure constant $\alpha = \frac{e^2}{\hbar c}$;
- Electron to proton mass ratio $\beta = \frac{m_e}{m_p}$;
- Nuclear gyromagnetic ratio g_n.

Mikhail Kozlov
Atomic and molecular spectra as probes for FC
When we are studying variation of fundamental constants, we are looking for lines with high sensitivity to the variation of fundamental constants. The dimensionless sensitivity coefficients are defined as:

$$\frac{\delta \omega}{\omega} = K_\alpha \frac{\delta \alpha}{\alpha} + K_\beta \frac{\delta \beta}{\beta} + K_g \frac{\delta g_n}{g_n}.$$

In astrophysics such frequency shifts lead to the difference between the apparent and actual redshifts z' and z:

$$\frac{\delta \omega}{\omega} = - \frac{z' - z}{1 + z'}$$

When we observe two lines with different sensitivities, their apparent redshifts will differ if fundamental constants has changed during the time passed:

$$\frac{\delta z'}{1 + z'} = - \Delta K_\alpha \frac{\delta \alpha}{\alpha} - \Delta K_\beta \frac{\delta \beta}{\beta} - \Delta K_g \frac{\delta g_n}{g_n}.$$
Sensitivity coefficients for different wavebands

<table>
<thead>
<tr>
<th>Transition</th>
<th>(K_\alpha)</th>
<th>(K_\beta)</th>
<th>(K_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical and UV bands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>typical E1-transition in atoms</td>
<td>(10^{-2} – 10^{-1})</td>
<td>(10^{-3})</td>
<td>(10^{-7})</td>
</tr>
<tr>
<td>electronic transitions in molecules</td>
<td>(10^{-2})</td>
<td>(10^{-2})</td>
<td>(10^{-7})</td>
</tr>
<tr>
<td>Microwave and FIR bands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fine-structure M1-transitions</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>vibrational transitions</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>rotational transitions</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>21-cm hyperfine transition in hydrogen</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>18-cm (\Lambda)-doublet line in OH</td>
<td>(-1.14)</td>
<td>2.55</td>
<td>0.0</td>
</tr>
<tr>
<td>1.25-cm inversion line in (\text{NH}_3)</td>
<td>0.0</td>
<td>4.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>
One of the best studied extragalactic microwave spectra belongs to the object \(B0218+357 \) at \(z = 0.68 \) (look-back time of approximately 6.3 Gyr). This spectrum includes 21-cm Hydrogen line, several rotational lines of OH, HCO\(^{+}\), and HCN molecules, 18-cm \(\Lambda \)-doublet lines of OH molecule, and several inversion lines of NH\(_3\). These lines were used to place limits on variations of all three fundamental constants:

\[
\begin{align*}
\delta \beta / \beta &= (-0.6 \pm 1.9) \times 10^{-6}, \\
\delta \alpha / \alpha &= (0.9 \pm 6.4) \times 10^{-6}, \\
\delta g_n / g_n &= (0 \pm 17) \times 10^{-6}.
\end{align*}
\]
Lambda-doublet transitions (spin decoupling)

OH molecule
\(\Delta F=0 \) lines

- \(K_\alpha \) for \(\Pi_{1/2} \)
- \(K_\alpha \) for \(\Pi_{3/2} \)
- \(K_\beta \) for \(\Pi_{1/2} \)
- \(K_\beta \) for \(\Pi_{3/2} \)
Λ-doublet transitions (spin decoupling)

CH molecule
ΔF=0 lines

- Kα for Π₁/₂
- Kα for Π₃/₂
- Kβ for Π₁/₂
- Kβ for Π₃/₂

Mikhail Kozlov Atomic and molecular spectra as probes for FC
Lambda-doublet transitions (hyperfine anomaly)

15NO molecule
state Π_{3/2}

Kα for ΔF=0
Kα for ΔF=−1
Kα for ΔF=1
Kβ for ΔF=0
Kβ for ΔF=−1
Kβ for ΔF=1

Mikhail Kozlov
Atomic and molecular spectra as probes for FC