If you are aware of an interesting new academic paper (that has been published in a peer-reviewed journal or has appeared on the arXiv), a conference talk (at an official professional scientific meeting), an external blog post (by a professional scientist) or a news item (in the mainstream news media), which you think might make an interesting topic for an FQXi blog post, then please contact us at forums@fqxi.org with a link to the original source and a sentence about why you think that the work is worthy of discussion. Please note that we receive many such suggestions and while we endeavour to respond to them, we may not be able to reply to all suggestions.
Please also note that we do not accept unsolicited posts and we cannot review, or open new threads for, unsolicited articles or papers. Requests to review or post such materials will not be answered. If you have your own novel physics theory or model, which you would like to post for further discussion among then FQXi community, then please add them directly to the "Alternative Models of Reality" thread, or to the "Alternative Models of Cosmology" thread. Thank you.
Can We Feel What It’s Like to Be Quantum?
Underground experiments in the heart of the Italian mountains are testing the links between consciousness and collapse theories of quantum physics.
FQXi Administrator Josh Hoffman wrote on Mar. 24, 2022 @ 22:50 GMT
Abstract: Decoherence shows how the openness of quantum systems – interaction with their environment – suppresses flagrant manifestations of quantumness. Einselection accounts for the emergence of preferred quasi-classical pointer states. Quantum Darwinism goes beyond decoherence. It posits that the information acquired by the monitoring environment responsible for decoherence is disseminated, in many copies, in the environment, and thus becomes accessible to observers. This indirect nature of the acquisition of information by observers who use the environment as a communication channel is the mechanism through which objective classical reality emerges from the quantum substrate: States of the systems of interest are not subjected to direct measurements (hence, not perturbed) by the agents acquiring information about them. Thus, they can exist unaffected by the information gained by observers.