Search FQXi

If you are aware of an interesting new academic paper (that has been published in a peer-reviewed journal or has appeared on the arXiv), a conference talk (at an official professional scientific meeting), an external blog post (by a professional scientist) or a news item (in the mainstream news media), which you think might make an interesting topic for an FQXi blog post, then please contact us at with a link to the original source and a sentence about why you think that the work is worthy of discussion. Please note that we receive many such suggestions and while we endeavour to respond to them, we may not be able to reply to all suggestions.

Please also note that we do not accept unsolicited posts and we cannot review, or open new threads for, unsolicited articles or papers. Requests to review or post such materials will not be answered. If you have your own novel physics theory or model, which you would like to post for further discussion among then FQXi community, then please add them directly to the "Alternative Models of Reality" thread, or to the "Alternative Models of Cosmology" thread. Thank you.

Forum Home
Terms of Use

Order posts by:
 chronological order
 most recent first

Posts by the blogger are highlighted in orange; posts by FQXi Members are highlighted in blue.

By using the FQXi Forum, you acknowledge reading and agree to abide by the Terms of Use

 RSS feed | RSS help

Ezron David: on 5/10/19 at 12:00pm UTC, wrote Wow! thanks or sharing the review of this book. garage door repair fountain...

Kaitlyn John: on 5/10/19 at 11:34am UTC, wrote Good article

pikachu chu: on 12/26/18 at 7:53am UTC, wrote It's a pity that he lost such a high award. Thank you for sharing the...

Mack Jordan: on 11/29/18 at 6:38am UTC, wrote Great Article such a really informative, love how your collection is so...

excel usps: on 11/28/18 at 8:51am UTC, wrote I've read all your post and It's really amazing , I can say. Keep it up and...

Asuna xing: on 9/5/18 at 2:47am UTC, wrote Excellent Post! I would like to thank for the efforts you have made in...

Asuna xing: on 9/5/18 at 2:45am UTC, wrote A lot of times you’re going to have a lot of resources on your main yotta...

Asuna xing: on 9/5/18 at 2:38am UTC, wrote A lot of times you’re going to have a lot of resources on your main yotta...


Robert McEachern: "Yes - of course! That is what the word "quantum" means! That is what I have..." in What Will Quantum...

Lorraine Ford: "Rob, Re my words e.g.: “I believe that physicists can take accurate..." in What Will Quantum...

Joe Fisher: "Today’s Closer To Truth Facebook page contained this peculiar supposedly..." in First Things First: The...

Robert McEachern: "You are barking up the wrong tree. It is the role of "information" and..." in Intelligence in the...

David Sloan: "Fetzer Franklin Fund has partnered with FQXi to stimulate research on the..." in Intelligence in the...

Joe Fisher: "Today’s Closer To Truth Facebook page contained this peculiar supposedly..." in First Things First: The...

Manish Sharma: "Professional, Experience Team Management and Affordable PPC Services for..." in FQXi'ers Debate the Deep...

Steve Dufourny: "Oh My God , I have calculated my reasoning about this quantum gravitation..." in Alternative Models of...

click titles to read articles

First Things First: The Physics of Causality
Why do we remember the past and not the future? Untangling the connections between cause and effect, choice, and entropy.

Can Time Be Saved From Physics?
Philosophers, physicists and neuroscientists discuss how our sense of time’s flow might arise through our interactions with external stimuli—despite suggestions from Einstein's relativity that our perception of the passage of time is an illusion.

A devilish new framework of thermodynamics that focuses on how we observe information could help illuminate our understanding of probability and rewrite quantum theory.

Gravity's Residue
An unusual approach to unifying the laws of physics could solve Hawking's black-hole information paradox—and its predicted gravitational "memory effect" could be picked up by LIGO.

Could Mind Forge the Universe?
Objective reality, and the laws of physics themselves, emerge from our observations, according to a new framework that turns what we think of as fundamental on its head.

December 6, 2019

CATEGORY: Blog [back]
TOPIC: Losing the Nobel Prize: Book Review and Special Podcast [refresh]
Bookmark and Share
Login or create account to post reply or comment.

FQXi Administrator Zeeya Merali wrote on Jul. 23, 2018 @ 20:44 GMT
Scientific autobiographies tend focus on history’s successes, with proud scientists revelling in the genius that led them to make groundbreaking discoveries. Very few scientists, however, are brave enough to dissect their spectacular failures, reflecting with brutal honesty on the biases, the fears, and the greed that led them to make poor ethical choices and high-profile blunders. But in a riveting account of the now infamous 2014 BICEP2 claim—and the subsequent humiliating retraction—of the first detection of ripples in spacetime, astronomer and BICEP2 team member, Brian Keating does just that.

"If true, this is one of the most important discoveries in the history of science." So said FQXi’s scientific director Max Tegmark, in response to the BICEP2 team’s announcement in March 2014 of the first detection of signs of so-called "primordial gravitational waves," set in motion just a fraction of a second after the big bang. These signs were picked up by the BICEP2 telescope, in the South Pole, which was scrutinising the leftover radiation from the big bang for a twisty pattern of light ("B-modes") made by these ripples. The gravitational waves were thought to have been generated during a cosmic growth spurt, when our early universe inflated at an exponentially fast rate. This process of inflation is something that many cosmologists believe must have occurred, but which has yet to be definitively confirmed.

A swish press conference at Harvard hailed the findings as the first detection of gravitational waves of any sort (coming, as it did, before LIGO picked up gravitational waves emanating from the collision of two black holes), as the first direct proof of inflation, as the first indirect evidence of the multiverse of parallel universes predicted to exist by inflation theory, and as the first probe of quantum gravitational effects. The astronomers behind the experiment, and the theorists behind inflation theory, seemed shoo-ins for Nobel Prizes. The media, and much of the physics community, went wild.

The only trouble was, of course, it wasn't true.

A few months later, the BICEP2 collaboration had to somewhat embarrassingly retract their claims. The team had indeed spotted the B-mode pattern they were looking for, but it was not caused by primordial gravitational waves, as they had initially hoped. Instead, they realized, the imprint was made as a result of light bouncing of galactic dust.

Free Podcast

Losing the Nobel Prize: In this special edition, physicist Brian Keating discusses his new book, which recounts the ill-fated BICEP2 announcement--and retraction--of the claimed discovery of primordial gravitational waves in 2014.


Go to full podcast

So what went wrong? That's the question at the heart of "Losing the Nobel Prize," by cosmologist Brian Keating of UC San Diego, who invented the telescope's predecessor, BICEP, and played a major role on the BICEP2 project. In a special edition of the podcast, Keating talks us through the events that led a team of brilliant scientists to make such a monumental mistake, and then proceed to unwittingly announce a bogus result—with huge fanfare—to the world.

Keating's intrigue-filled account of the BICEP2 team's dubious ethical conduct along the way to reaching the wrong conclusion makes a captivating read. The mess would have been averted if the team had an accurate measure of the dust contaminating the patch of sky they were viewing. The ground-based telescope's only rival in the hunt for B-modes, the far-costlier Planck satellite, was equipped to create precisely the dust map that they needed. But Planck's team members would not release this valuable data to the BICEP2 team—understandably so, given that they were potentially racing to the same result. As Keating eloquently puts it on the podcast (though with tongue firmly in cheek): “We desperately wanted to borrow their data. And when we couldn’t borrow it, after begging for it, we basically stole it.”

This 'theft' came about after one of the Planck collaboration gave a public talk with a slide that appeared to contain the dust information that BICEP2 needed. Some grateful BICEP2 members lifted it from the internet, and digitised this qualitative slide in an attempt to extrapolate quantitive information about dust levels, without consulting the Planck team. Therein lay their undoing. Had the channels of communication been open with Planck, they would have known that they were mishandling the slide, leading them to underestimate the role of dust and over-interpret the B-mode effect, wrongly attributing it to inflation. Their fear that Planck would sweep the Nobel Prize out from under their noses led them to rush their announcement, going public before the results had passed peer review.

On the podcast, Keating openly describes his concerns about the ethics around the use of this slide, and ways he would like the scientific community to change, to avoid similar dastardly deeds happening in the future. We also discuss the media hoopla that surrounded the announcement. Speaking as a science journalist, it was clear within days of the press conference that some cosmologists had doubts about whether the signal was more than just dust; yet it was a while before we in the media critically reported on the BICEP2 claim and gave voice to those misgivings. Interestingly, though, Keating stands by the team's decision to go public before peer review, arguing that, in this case, peer review may only have served to delay the claim's unravelling.

There are two major villains Keating identifies that, he says, must share some of the blame for the debacle. The first is the galactic dust that quite literally clouded the team's judgement. In the book, he skilfully presents the history of the universe seen through the eyes of an experimentalist. Rather than simply focusing on the much-lauded successes of Galileo, Hubble, and others, as so many popular accounts have done before, he provides the lesser-told stories of how they too, like many others throughout history, were sometimes tricked into misreading their observations by that pesky dust. This alternative version of cosmology is deftly interwoven with his witty account of his own personal, and at times deeply moving, quest to build a Nobel-winning experiment, in part, to impress his estranged father.

It's this hunger for fame and recognition that sets up the second villain of the book: the Nobel prize itself. Keating calls for a wholesale change in culture away from “Nobelism”—the religious devotion that scientists have for this hallowed award. On the podcast, he enumerates ways to improve the prize to make it more inclusive, and to better represent the large-scale collaborations that underpin successful experiments. Perhaps most provocatively—and something we don't get into in the podcast, but you can read about in the book—Keating also argues that Nobels should only be given for "serendipitous" findings. In that case, neither BICEP2 nor Planck would have been eligible, had either found signs of primordial gravitational waves, because both were designed to hunt for these, from the outset. By contrast, the accidental discovery of the accelerated expansion of the universe by the two competing teams, which garnered Nobels for Brian Schmidt, Adam Reiss, and Saul Perlmutter, on both teams, would have qualified. But, I wonder, even if all Keating's suggested changes were taken on board by the organisers of the Nobel Prize, would that really prevent future scientists from being tempted to the dark side, by a lust for the award? On the podcast, we chat about just that issue.

If there is a weakness in Keating's book, it is in the sections devoted to criticising the prize. That's not because I particularly disagree with his suggestions, but because it seems unlikely that the Nobel bigwigs will pay much heed; Keating may as well rage against the dust in the heavens that plagued his experiment. Nonetheless, I would highly recommend the book for its terrific and rarely-told alternate history of cosmology from an experimentalist's viewpoint, and its compelling insight into the human frailties behind what ultimately failed to be one of the most important discoveries in the history of science, but still stands as one of the most fascinating incidents in the sociology of science.

Bookmark and Share
this post has been edited by the forum administrator

report post as inappropriate

Joe William Fisher wrote on Jul. 28, 2018 @ 15:07 GMT
Irrefutable fact, the earth had a visible surface for millions of years before any theoretical physicists appeared on that surface and began publishing their senseless guesswork about any invisible void or invisible black holes or invisible finite ripples in conjectural “space/time”.

Logically, Nature must have devised the only visible structure of the real Universe allowable. There am only one visible unified infinite surface occurring eternally in one infinite dimension that am always illuminated mostly by finite non-surface light.

There am no such a thing as finite time for infinite surface am eternal. There am only time-pieces, each one of which can be started or stopped and no two of which can ever record identical information. There am no space. Unified surface am infinite. Light cannot "bounce off interstellar dust. Light does not have a surface, therefore light can only appear on the surface of interstellar dust.

Joe Fisher, Realist

Bookmark and Share
report post as inappropriate

Georgina Woodward replied on Jul. 29, 2018 @ 01:57 GMT
The light has to be received by an observer before it can appear to be anywhere. If it adheres to the dust it can not be received elsewhere.

Bookmark and Share
report post as inappropriate

Joe Fisher replied on Jul. 29, 2018 @ 14:38 GMT
Dear Georgina,

Light does not have a surface. Only one single unified infinite surface eternally occurring in one single infinite dimension that am always mostly illuminated by FINITE non-surface light has ever existed and will only ever exist. You are trying to describe a finite amount of one single light source that could only be finitely OBSERVED by one finite observer .

Joe Fisher, Realist

Bookmark and Share
report post as inappropriate

Michael Smith wrote on Aug. 17, 2018 @ 12:32 GMT
The light is the electromagnetic wave, as all electromagnetic waves have several important features. One of the most important features is the wavelength, which determines the spectral color of the beam.

color circles

Bookmark and Share
this post has been edited by the author since its original submission

report post as inappropriate

Georgina Woodward replied on Aug. 18, 2018 @ 00:34 GMT
I think it would be helpful, in physics, to use the words "light" and "electromagnetic radiation" or" EM waves", and the like, to represent categorically different phenomena. "Light " for the product of processing of received EM radiation; and "EM radiation" and the like. for the phenomenon in the environment which might be input to an organism sensory system or a sensitive device.

Bookmark and Share
report post as inappropriate

Georgina Woodward replied on Aug. 18, 2018 @ 01:53 GMT
Continuing with the differentiation of what is observed or seen and what is the observer independent phenomenon; "colour" could be helpfully reserved for products of processing EM input. Which are correlated to wavelength but not directly corresponding. As the colour product also depends on the processing that occurs, the chemistry of the photo-receptors or senors or sensitive material used, and how the light is being received , I.e. the relationship of the observer to the EM input. The EM waves in the environment (unseen) do not have colour, although they have the frequency and corresponding wavelength with which they were emitted from a source

Bookmark and Share
this post has been edited by the author since its original submission

report post as inappropriate

Kaitlyn John wrote on May. 10, 2019 @ 11:34 GMT
Good article

Bookmark and Share
this post has been edited by the author since its original submission

report post as inappropriate

Login or create account to post reply or comment.

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.