Search FQXi


If you are aware of an interesting new academic paper (that has been published in a peer-reviewed journal or has appeared on the arXiv), a conference talk (at an official professional scientific meeting), an external blog post (by a professional scientist) or a news item (in the mainstream news media), which you think might make an interesting topic for an FQXi blog post, then please contact us at forums@fqxi.org with a link to the original source and a sentence about why you think that the work is worthy of discussion. Please note that we receive many such suggestions and while we endeavour to respond to them, we may not be able to reply to all suggestions.

Please also note that we do not accept unsolicited posts and we cannot review, or open new threads for, unsolicited articles or papers. Requests to review or post such materials will not be answered. If you have your own novel physics theory or model, which you would like to post for further discussion among then FQXi community, then please add them directly to the "Alternative Models of Reality" thread, or to the "Alternative Models of Cosmology" thread. Thank you.

Forum Home
Introduction
Terms of Use

Order posts by:
 chronological order
 most recent first

Posts by the blogger are highlighted in orange; posts by FQXi Members are highlighted in blue.

By using the FQXi Forum, you acknowledge reading and agree to abide by the Terms of Use

 RSS feed | RSS help
RECENT POSTS IN THIS TOPIC

Georgina Woodward: on 8/18/18 at 1:53am UTC, wrote Continuing with the differentiation of what is observed or seen and what is...

Georgina Woodward: on 8/18/18 at 0:34am UTC, wrote I think it would be helpful, in physics, to use the words "light" and...

Joe Fisher: on 7/29/18 at 14:38pm UTC, wrote Dear Georgina, Light does not have a surface. Only one single unified...

Georgina Woodward: on 7/29/18 at 1:57am UTC, wrote The light has to be received by an observer before it can appear to be...

Zeeya Merali: on 7/23/18 at 20:44pm UTC, wrote Scientific autobiographies tend focus on history’s successes, with proud...


RECENT FORUM POSTS

Steve Dufourny: "Hi Jim, yes it is in the present, the present is important, we exist in..." in The Quantum Clock-Maker...

Jim Snowdon: "Hi Steve, When light leaves the Sun, it does so in the present. ..." in The Quantum Clock-Maker...

Stefan Weckbach: "Unfortunately there is not much participation here on this site. So it..." in The Present State of...

Georgina Woodward: "Marcel, John, what do you think of the arguments I have presented?" in The Nature of Time

Lorraine Ford: "P.S. No matter what mathematicians do (and no matter what complexity..." in The Present State of...

Steve Dufourny: "Hello Daniele Oriti, I liked your approach for this quantum gravitation...." in The universe as a quantum...

Lorraine Ford: "David and Kelvin, But what IS consciousness? I would say that the..." in Consciousness and the...

Lorraine Ford: "Markus, I think you are over complexifying everything. I can only repeat..." in The Room in the Elephant:...


RECENT ARTICLES
click titles to read articles

The Quantum Engineer: Q&A with Alexia Auffèves
Experiments seek to use quantum observations as fuel to power mini motors.

The Quantum Clock-Maker Investigating COVID-19, Causality, and the Trouble with AI
Sally Shrapnel, a quantum physicist and medical practitioner, on her experiments into cause-and-effect that could help us understand time’s arrow—and build better healthcare algorithms.

Connect the Quantum Dots for a New Kind of Fuel
'Artificial atoms' allow physicists to manipulate individual electrons—and could help to reduce energy wastage in electronic devices.

Can Choices Curve Spacetime?
Two teams are developing ways to detect quantum-gravitational effects in the lab.

The Quantum Engine That Simultaneously Heats and Cools
Tiny device could help boost quantum electronics.


FQXi BLOGS
September 24, 2021

CATEGORY: Blog [back]
TOPIC: Losing the Nobel Prize: Book Review and Special Podcast [refresh]
Bookmark and Share
Login or create account to post reply or comment.

FQXi Administrator Zeeya Merali wrote on Jul. 23, 2018 @ 20:44 GMT
Scientific autobiographies tend focus on history’s successes, with proud scientists revelling in the genius that led them to make groundbreaking discoveries. Very few scientists, however, are brave enough to dissect their spectacular failures, reflecting with brutal honesty on the biases, the fears, and the greed that led them to make poor ethical choices and high-profile blunders. But in a riveting account of the now infamous 2014 BICEP2 claim—and the subsequent humiliating retraction—of the first detection of ripples in spacetime, astronomer and BICEP2 team member, Brian Keating does just that.

"If true, this is one of the most important discoveries in the history of science." So said FQXi’s scientific director Max Tegmark, in response to the BICEP2 team’s announcement in March 2014 of the first detection of signs of so-called "primordial gravitational waves," set in motion just a fraction of a second after the big bang. These signs were picked up by the BICEP2 telescope, in the South Pole, which was scrutinising the leftover radiation from the big bang for a twisty pattern of light ("B-modes") made by these ripples. The gravitational waves were thought to have been generated during a cosmic growth spurt, when our early universe inflated at an exponentially fast rate. This process of inflation is something that many cosmologists believe must have occurred, but which has yet to be definitively confirmed.

A swish press conference at Harvard hailed the findings as the first detection of gravitational waves of any sort (coming, as it did, before LIGO picked up gravitational waves emanating from the collision of two black holes), as the first direct proof of inflation, as the first indirect evidence of the multiverse of parallel universes predicted to exist by inflation theory, and as the first probe of quantum gravitational effects. The astronomers behind the experiment, and the theorists behind inflation theory, seemed shoo-ins for Nobel Prizes. The media, and much of the physics community, went wild.

The only trouble was, of course, it wasn't true.

A few months later, the BICEP2 collaboration had to somewhat embarrassingly retract their claims. The team had indeed spotted the B-mode pattern they were looking for, but it was not caused by primordial gravitational waves, as they had initially hoped. Instead, they realized, the imprint was made as a result of light bouncing of galactic dust.

Free Podcast

Losing the Nobel Prize: In this special edition, physicist Brian Keating discusses his new book, which recounts the ill-fated BICEP2 announcement--and retraction--of the claimed discovery of primordial gravitational waves in 2014.

LISTEN:



Go to full podcast

So what went wrong? That's the question at the heart of "Losing the Nobel Prize," by cosmologist Brian Keating of UC San Diego, who invented the telescope's predecessor, BICEP, and played a major role on the BICEP2 project. In a special edition of the podcast, Keating talks us through the events that led a team of brilliant scientists to make such a monumental mistake, and then proceed to unwittingly announce a bogus result—with huge fanfare—to the world.

Keating's intrigue-filled account of the BICEP2 team's dubious ethical conduct along the way to reaching the wrong conclusion makes a captivating read. The mess would have been averted if the team had an accurate measure of the dust contaminating the patch of sky they were viewing. The ground-based telescope's only rival in the hunt for B-modes, the far-costlier Planck satellite, was equipped to create precisely the dust map that they needed. But Planck's team members would not release this valuable data to the BICEP2 team—understandably so, given that they were potentially racing to the same result. As Keating eloquently puts it on the podcast (though with tongue firmly in cheek): “We desperately wanted to borrow their data. And when we couldn’t borrow it, after begging for it, we basically stole it.”

This 'theft' came about after one of the Planck collaboration gave a public talk with a slide that appeared to contain the dust information that BICEP2 needed. Some grateful BICEP2 members lifted it from the internet, and digitised this qualitative slide in an attempt to extrapolate quantitive information about dust levels, without consulting the Planck team. Therein lay their undoing. Had the channels of communication been open with Planck, they would have known that they were mishandling the slide, leading them to underestimate the role of dust and over-interpret the B-mode effect, wrongly attributing it to inflation. Their fear that Planck would sweep the Nobel Prize out from under their noses led them to rush their announcement, going public before the results had passed peer review.

On the podcast, Keating openly describes his concerns about the ethics around the use of this slide, and ways he would like the scientific community to change, to avoid similar dastardly deeds happening in the future. We also discuss the media hoopla that surrounded the announcement. Speaking as a science journalist, it was clear within days of the press conference that some cosmologists had doubts about whether the signal was more than just dust; yet it was a while before we in the media critically reported on the BICEP2 claim and gave voice to those misgivings. Interestingly, though, Keating stands by the team's decision to go public before peer review, arguing that, in this case, peer review may only have served to delay the claim's unravelling.

There are two major villains Keating identifies that, he says, must share some of the blame for the debacle. The first is the galactic dust that quite literally clouded the team's judgement. In the book, he skilfully presents the history of the universe seen through the eyes of an experimentalist. Rather than simply focusing on the much-lauded successes of Galileo, Hubble, and others, as so many popular accounts have done before, he provides the lesser-told stories of how they too, like many others throughout history, were sometimes tricked into misreading their observations by that pesky dust. This alternative version of cosmology is deftly interwoven with his witty account of his own personal, and at times deeply moving, quest to build a Nobel-winning experiment, in part, to impress his estranged father.

It's this hunger for fame and recognition that sets up the second villain of the book: the Nobel prize itself. Keating calls for a wholesale change in culture away from “Nobelism”—the religious devotion that scientists have for this hallowed award. On the podcast, he enumerates ways to improve the prize to make it more inclusive, and to better represent the large-scale collaborations that underpin successful experiments. Perhaps most provocatively—and something we don't get into in the podcast, but you can read about in the book—Keating also argues that Nobels should only be given for "serendipitous" findings. In that case, neither BICEP2 nor Planck would have been eligible, had either found signs of primordial gravitational waves, because both were designed to hunt for these, from the outset. By contrast, the accidental discovery of the accelerated expansion of the universe by the two competing teams, which garnered Nobels for Brian Schmidt, Adam Reiss, and Saul Perlmutter, on both teams, would have qualified. But, I wonder, even if all Keating's suggested changes were taken on board by the organisers of the Nobel Prize, would that really prevent future scientists from being tempted to the dark side, by a lust for the award? On the podcast, we chat about just that issue.

If there is a weakness in Keating's book, it is in the sections devoted to criticising the prize. That's not because I particularly disagree with his suggestions, but because it seems unlikely that the Nobel bigwigs will pay much heed; Keating may as well rage against the dust in the heavens that plagued his experiment. Nonetheless, I would highly recommend the book for its terrific and rarely-told alternate history of cosmology from an experimentalist's viewpoint, and its compelling insight into the human frailties behind what ultimately failed to be one of the most important discoveries in the history of science, but still stands as one of the most fascinating incidents in the sociology of science.

Bookmark and Share
this post has been edited by the forum administrator



Login or create account to post reply or comment.

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.