Search FQXi


If you are aware of an interesting new academic paper (that has been published in a peer-reviewed journal or has appeared on the arXiv), a conference talk (at an official professional scientific meeting), an external blog post (by a professional scientist) or a news item (in the mainstream news media), which you think might make an interesting topic for an FQXi blog post, then please contact us at forums@fqxi.org with a link to the original source and a sentence about why you think that the work is worthy of discussion. Please note that we receive many such suggestions and while we endeavour to respond to them, we may not be able to reply to all suggestions.

Please also note that we do not accept unsolicited posts and we cannot review, or open new threads for, unsolicited articles or papers. Requests to review or post such materials will not be answered. If you have your own novel physics theory or model, which you would like to post for further discussion among then FQXi community, then please add them directly to the "Alternative Models of Reality" thread, or to the "Alternative Models of Cosmology" thread. Thank you.

Contests Home

Current Essay Contest


Sponsored by the Fetzer Franklin Fund and The Peter & Patricia Gruber Foundation

Previous Contests

Wandering Towards a Goal
How can mindless mathematical laws give rise to aims and intention?
December 2, 2016 to March 3, 2017
Contest Partner: The Peter and Patricia Gruber Fnd.
read/discusswinners

Trick or Truth: The Mysterious Connection Between Physics and Mathematics
Contest Partners: Nanotronics Imaging, The Peter and Patricia Gruber Foundation, and The John Templeton Foundation
Media Partner: Scientific American

read/discusswinners

How Should Humanity Steer the Future?
January 9, 2014 - August 31, 2014
Contest Partners: Jaan Tallinn, The Peter and Patricia Gruber Foundation, The John Templeton Foundation, and Scientific American
read/discusswinners

It From Bit or Bit From It
March 25 - June 28, 2013
Contest Partners: The Gruber Foundation, J. Templeton Foundation, and Scientific American
read/discusswinners

Questioning the Foundations
Which of Our Basic Physical Assumptions Are Wrong?
May 24 - August 31, 2012
Contest Partners: The Peter and Patricia Gruber Foundation, SubMeta, and Scientific American
read/discusswinners

Is Reality Digital or Analog?
November 2010 - February 2011
Contest Partners: The Peter and Patricia Gruber Foundation and Scientific American
read/discusswinners

What's Ultimately Possible in Physics?
May - October 2009
Contest Partners: Astrid and Bruce McWilliams
read/discusswinners

The Nature of Time
August - December 2008
read/discusswinners

Forum Home
Introduction
Terms of Use

Order posts by:
 chronological order
 most recent first

Posts by the author are highlighted in orange; posts by FQXi Members are highlighted in blue.

By using the FQXi Forum, you acknowledge reading and agree to abide by the Terms of Use

 RSS feed | RSS help
RECENT POSTS IN THIS TOPIC


RECENT FORUM POSTS

Thomas Ray: "(reposted in correct thread) Lorraine, Nah. That's nothing like my view...." in 2015 in Review: New...

Lorraine Ford: "Clearly “law-of-nature” relationships and associated numbers represent..." in Physics of the Observer -...

Lee Bloomquist: "Information Channel. An example from Jon Barwise. At the workshop..." in Physics of the Observer -...

Lee Bloomquist: "Please clarify. I just tried to put a simple model of an observer in the..." in Alternative Models of...

Lee Bloomquist: "Footnote...for the above post, the one with the equation existence =..." in Alternative Models of...

Thomas Ray: "In fact, symmetry is the most pervasive physical principle that exists. ..." in “Spookiness”...

Thomas Ray: "It's easy to get wound around the axle with black hole thermodynamics,..." in “Spookiness”...

Joe Fisher: "It seems to have escaped Wolpert’s somewhat limited attention that no two..." in Inferring the Limits on...


RECENT ARTICLES
click titles to read articles

The Complexity Conundrum
Resolving the black hole firewall paradox—by calculating what a real astronaut would compute at the black hole's edge.

Quantum Dream Time
Defining a ‘quantum clock’ and a 'quantum ruler' could help those attempting to unify physics—and solve the mystery of vanishing time.

Our Place in the Multiverse
Calculating the odds that intelligent observers arise in parallel universes—and working out what they might see.

Sounding the Drums to Listen for Gravity’s Effect on Quantum Phenomena
A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Watching the Observers
Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.


FQXi FORUM
January 19, 2018

CATEGORY: FQXi Essay Contest - Spring, 2017 [back]
TOPIC: Indra's Net - Holomorphic Fundamentalness by Cristinel Stoica [refresh]
Bookmark and Share
Login or create account to post reply or comment.

This essay's rating: Community = 7.6; Public = 7.5


Author Cristinel Stoica wrote on Dec. 21, 2017 @ 21:02 GMT
Essay Abstract

If "fundamental" means something that is at the root of everything, then the physical laws and the objects to which they apply seem to be fundamental. But by looking at the mathematical structure of various theories in physics, we see that "fundamentalness" is relative, revealing a holistic nature. Various types of holism also appear in quantum theory, in Bohm's idea of implicate order, and in the holographic principle. This essay goes beyond these, by proposing a type of fundamentalness as a mathematically consistent basis for these forms of holism, the physical laws, and the ontology of physics. The discussion is based on various examples from particle physics and its mathematical formulation, and implications to what is "fundamental" are analyzed.

Author Bio

Theoretical physicist. Research interests: foundations of physics, gauge theory, foundations of quantum mechanics, singularities in general relativity. Interested especially in the geometric aspects of the physical laws. ArXiv: http://arxiv.org/a/stoica_o_1 Blog: http://www.unitaryflow.com/

Download Essay PDF File




Scott S Gordon wrote on Dec. 21, 2017 @ 23:11 GMT
Hi Christi, You are making some interesting points (no pun intended) on a very fundamental discussion of points, lines, geometric structures, etc... You then jump into standard physics, theories and equations... Is there a place in your thinking where a line (of points) comes to possess the property of distance? Is distance something you take for granted in your theory? Would this play a role in developing your model?

report post as inappropriate

Author Cristinel Stoica replied on Dec. 22, 2017 @ 06:26 GMT
Hi Scott,

Distance is always there. In Hilbert's axiomatization of the 3D space the first 12 axioms are about incidence and order, and distance is only mentioned in the 13th axiom. But this doesn't mean that the Euclidean space goes through some phases and only in the 13th phase starts having distances. All axioms work together in no preferred order. Only in our thinking we can unfold the logic and prove many theorems in geometry before discussing distances, but as I explained, we can also start by first discussing distances. This shows a relativistic perspective on what is fundamental in a mathematical structure in general. Similarly, distance is always there in physics, even though in general relativity it is dynamic, and at the big bang it may be 0. Distance is always there in the holomorphic perspective I propose too, since it is based on geometric algebra, and implicitly on distance.

Best wishes,

Cristi



Scott S Gordon replied on Dec. 24, 2017 @ 23:55 GMT
That is my point - I do not think that distance was always there... I think that distance also had to be created especially considering the fact that there are three independent distance directions (dimensions) in our spacetime with no reason as to why...

Consider reading my essay and see if you think distance should just be a given as it has always been considered

report post as inappropriate

Author Cristinel Stoica replied on Dec. 25, 2017 @ 17:20 GMT
A possibility is that distance appeared from a kind of symmetry breaking. For example in a theory where spacetime is a manifold, but the structure group of the tangent bundle is GL(4,R), and it is broken to SO(1,3) by some mechanism. Another possibility is conformal gravity, where you have scale invariance, so angles are invariant, but not the lengths. Note that the Standard Model without masses is conformally invariant. And then the conformal symmetry in conformal gravity is broken to SO(1,3) by some geometric mechanism, which formally is identical to Higgs and endows some of the particles with masses just like in the Standard Model. So yes, it is possible.




Gary D. Simpson wrote on Dec. 23, 2017 @ 18:54 GMT
Christinel,

This is an excellent essay. Parts of it go beyond my ability to fully understand but I do get the general idea. I am a believer in quaternions as the basis for Physics so I am able generally to follow your arguments.

The discussion of the various types of geometries was very instructive. I have never heard of some of the systems you mention. Yet they all seem to be equivalent. Once you define what is fundamental, the axioms and theorems then develop.

The notion that all the information of the universe could be encoded at each point of the universe is profound. It is more than I can wrap my mind around. Perhaps I should stick with tic-tac-toe?

Equation 1 simply looks like multiplication of a pair of vectors to me. That is the opposite of the sum of the dot product and the cross product.

Regarding Equation 2 (Dirac Operator), is the function f a vector? If so, then is d/dx in the k direction and d/dy in the j direction?

You lose me when you get to the discussion of the standard model. Allow me to ask a question though ... can that vast menagerie of particles actually be fundamental? And how can something be fundamental if it is not stable? Surely the thing to which these particles decay must be fundamental instead?

All in all, an excellent essay. Many thanks.

Best Regards,

Gary Simpson

report post as inappropriate

Author Cristinel Stoica replied on Dec. 24, 2017 @ 06:51 GMT
Gary,

Thanks for the interest in my essay, and for the questions, which give me the opportunity to give some details, for you and others who may be interested.

> I am a believer in quaternions as the basis for Physics so I am able generally to follow your arguments.

Yes, quaternions appear more than we normally see in the usual formulations of physics. The Clifford algebras...

view entire post




Author Cristinel Stoica replied on Dec. 24, 2017 @ 06:54 GMT
There is a problem with rendering an equation in my previous comment. Let me give a link.




David Brown wrote on Dec. 25, 2017 @ 13:43 GMT
"A major question is why these particular gauge symmetries and representations?" What is a major clue to answering the preceding question? In the list of references for "Indra's Net - Holomorphic Fundamentalness" there is no mention of Milgrom, Kroupa, or McGaugh. I say that Milgrom is the Kepler of contemporary cosmology — on the basis of overwhelming empirical evidence. Google "witten milgrom", "kroupa milgrom", and "mcgaugh milgrom".

report post as inappropriate

Author Cristinel Stoica replied on Dec. 25, 2017 @ 17:11 GMT
Hi David,

My remark "A major question is why these particular gauge symmetries and representations?" refers to the pattern of fundamental particles. Milgrom's MOND is about the rotation of galaxies, so how can it be relevant to that question? Especially since MOND, as opposed to various "dark matter" proposals, doesn't claim to require new fundamental particles, being based on modifying gravity alone.

Nevertheless, MOND is important, but my essay was not about this, you will not find the words "dark matter" or "rotations of galaxies" in it, so I don't think I was being unjust to Milgrom. My essay is about what "fundamental" means.

When we talk about fundamental laws, I think the focus should be on fundamental principles, rather than on approximations and phenomenology. Newton's gravity is an approximation, and so is a modification of Newton's gravity like MOND. A fundamental theory should in particular be generally covariant. But I have good news for Milgrom: there is a generally covariant modification of Einstein's gravity - conformal gravity - which apparently gives as a limit case Milgrom's. I mention conformal gravity for its salient features regarding the Standard Model of particle physics in the endnote #6, but it is also relevant to MOND. So if the final theory will embed conformal symmetry, MOND or something close to MOND will be an approximation of it.

Best regards,

Cristi



Steve Dufourny replied on Jan. 8, 2018 @ 13:18 GMT
Hi Cristi and Mr Brown,

I have difficulties with this MOND , like Verlinde also has made.The fact to change this gravitation seems so odd.On the other side we search this quantum weakest force and we could insert this dark matter in encircling this standard model by this gravitation governing this universe. The fact to consider only photons like primordial informations seems odd.The problem...

view entire post


report post as inappropriate


Lawrence B. Crowell wrote on Dec. 26, 2017 @ 23:18 GMT
It appears that in effect you have CL(3,3) ~ SL(3,C) or U(8) in a Clifford basis. You can break this into SU(3) and SO(3,1). I have similar ideas with SU(2,2) and the occurrence of additional quarks as dark matter.

report post as inappropriate

Author Cristinel Stoica replied on Dec. 27, 2017 @ 11:29 GMT
Hi Lawrence,

More precisely, Cl(3,3) is the complex Clifford algebra of a complex 6D space V. The space V can be decomposed as the direct sum of two complex 3D isotropic spaces, which form a Witt decomposition, and we consider them fixed. The transformations of Cl(3,3) preserving this decomposition give the SU(3)xU(1), where U(1) is for electromagnetism. They act by permuting the 8 ideals of Cl(3,3) according to the correct representations of SU(3). On these ideals, the Dirac algebra acts at left in a reducible way, which give room for SU(2) to act as well at left. So the ideals are the spinor spaces for quarks and leptons, and they transform according to the Standard Model group, with the proper representations built in.

I'm also interested in SU(2,2) and how you used it.

Best regards,

Cristi



Lawrence B. Crowell replied on Dec. 30, 2017 @ 00:41 GMT
SL(3, C) is SU(3) in a tensor product with an 8 dimensional space, or 8 real dimension = 4 complex dimensions. So we can think of this as spinorial or complex valued spacetime with SU(3) principal bundle. The 8 dimensional space is represented only by the trace of a Hermitian matrix or its metric. You then have exp(iS) for S = ∫ds and ds the Gaussian interval. There are three copies of sl(2,C) in the group sl(3,C) which corresponds to three weights or the vector space (e_1, e_2, e_3, f_1, f_2, f_3) which are the 6 dimensional space you talk about.

I thought I would mention that the conformal diagram you have of the black hole represents one possible slicing. I can slice spatial surfaces any way that I want. I can arrange it that spatial surfaces reach the singularity inside the black hole before they reach i^+ or I^∞. The slicing and how the surfaces reach r = 0 is arbitrary.

LC

report post as inappropriate

Author Cristinel Stoica replied on Dec. 30, 2017 @ 12:04 GMT
That's interesting, considering that sl(3,C) has 16 real dimensions, and the Clifford algebra Cl(3,3,C) I used has 64 complex dimensions, and its full spinors have 8 complex dimensions.

About the black hole singularity, are you referring to this one? Slicing is not unique, of course, that's true in all solutions in general relativity, but the things are not as flexible how you may think. What matters is the atlas, not the particular solution, and the atlas has no preferred slicing. My Schwarzschild solution is analytic and is continued analytically through the singularity, and it remains so even if you apply an analytic change of coordinates and get a different slicing. Moreover, in the paper I find an infinite family of different Schwarzschild solutions analytic at the singularity, and in fact an infinite family of such atlases. But among them there is a unique one which saves the fields at singularity both geometrically and physically in the way I describe here.

Best regards,

Cristi




Anonymous wrote on Jan. 7, 2018 @ 07:13 GMT
Hi Cristinel, I enjoyed your essay when I got into it, rather than just taking a quick look. It is full of interesting ideas that you have clearly explained. I think the question you ponder, about whether fundamental is most foundational; And how foundational should be considered when seeking the fundamental, is good. It seems to me that though material things ultimately reduce to far simpler...

view entire post


report post as inappropriate


Georgina Woodward wrote on Jan. 7, 2018 @ 07:15 GMT
Hi Cristinel, I enjoyed your essay when I got into it, rather than just taking a quick look. It is full of interesting ideas that you have clearly explained. I think the question you ponder, about whether fundamental is most foundational; And how foundational should be considered when seeking the fundamental, is good. It seems to me that though material things ultimately reduce to far simpler...

view entire post


report post as inappropriate

Author Cristinel Stoica replied on Jan. 7, 2018 @ 08:33 GMT
Hi Georgina,

Thank you for going into my essay, and for sending me your thoughts. I hope you'll write your ideas in an essay for this edition. Also your idea to compare the classification of particles with the deities of Terry Pratchett's Discworld is nice, I think it would be fun if you write about it :) About what's truly fundamental, who knows, many descriptions seem to work partially, to be equivalent sometimes, but I think we know very little and we need fresh ideas.

Best wishes,

Cristi



Georgina Woodward replied on Jan. 7, 2018 @ 22:42 GMT
Hi Cristinel, I have just found out about the origin of 'Indra's' net. I didn't realize 7 was a footnote but thought it was just a reference. Having read the footnote I understand what Indra's net is and why you have chosen to propose it as a model of fundamental physics, tying in with recent ideas in physics about the holographic principle. I really like Francis H Cook's description. "we will discover that in its polished surface there are reflected all the other jewels in the net, infinite in number. Not only that, but each of the jewels reflected in this one jewel is also reflecting all the other jewels". It sounds beautiful. I agree that it is good to explore fresh ideas. My reservation -but what problems does it solve? In what way is it an improvement over other explanations? Plus, of course, personal bias in favour of my own explanatory framework.

report post as inappropriate

Author Cristinel Stoica replied on Jan. 8, 2018 @ 08:58 GMT
Hi Georgina,

So far, physicists found mathematical descriptions for various phenomena, which cover a large domain. You have equations describing various phenomena, combined together, and it seems that we just need a few more pieces of the puzzle and we will know everything about the fundamental structure of the universe. And maybe continuing like this we will eventually have all these pieces combined together, and covering what we know about the universe, it seems we are close. But I am not satisfied with just a collection of equations combined together. You can put all sorts of things in the Lagrangian, like new unobserved particles predicted by various models. But why these fields, these equations, these terms in the Lagrangian? My dissatisfaction is not only metaphysical or aesthetical. The problem is that the current view gives too much freedom to change the theory if new facts are discovered. I don't trust something that can be adapted so easily. I want something that once found, you can't change. And if there are new phenomena, I want those to result from that model because they are there, not because you can add them by hand. A theory that can't be adjusted has much more predictive powers, so higher chances to be falsified, and if not falsified by any conditions, to be true.

I was attracted by holomorphic functions since I first learned about them as undergraduate student. On the one hand when I read that you can use them to represent the electric field in 2D. Moving to 4D spacetime and replacing the complex field with the Clifford algebra of spacetime reveals that you can include other equations of physics, but including the other forces and the particles from the Standard Model shows that even this needs to be replaced with something richer, and I think, as I explained, that this is a larger algebra, perhaps a larger Clifford algebra, like the complex Clifford algebra Cl(3,3), or maybe another one. Different things we know in physics seem to be regained from such a structure already, without having to add them manually, and without giving us too much freedom to adjust. So I believe that such a structure exist, which naturally includes what we know and what there is to be found, but in a rigid way, so that you can't and don't need to adjust it. No mobile parts, maximum rigidity. And the most rigid mathematical fields seems to me to be the holomorphic ones.

When physicists talk about simplicity, at first sight one may think that it is about using simple constituents which are similar to what our intuition can grasp easily. But to physicists, "simple" is not "easy". On the one hand simple means the smallest number of principles, equations, and free parameters. On the other hand, it means simplicity in the mathematical sense of indecomposability. So what appears to us as being different fields, to be just different components of one thing. This sort of simplicity means rigidity.

The fact that holomorphic functions have this property the full information about the field is contained in any point was something that I found cute and aesthetically appealing, but didn't think of it from the beginning as being relevant. Later, when I found out more about things like quantum holism, the holographic principle, and the holistic ideas of Bohm, I realized that these may just be consequences of this analyticity of holomorphic functions. And only last year I found out about Indra's net, which I thought it was a good metaphor for this. And I thought this idea may be interesting for the theme of this essay contest, since it introduces an interesting type of fundamentalness.

Kind regards,

Cristi




Jack Hamilton James wrote on Jan. 8, 2018 @ 05:16 GMT
Dear Cristi,

What an excellent essay, beautifully presented. I particularly like your Isomorphic stories section, and also the notion of Indras Net. Let's assume it is a correct depiction of reality at a fundamental level, so in reality, you have found the way indivisible units operate to create everything within it, including yourself. Do you now know enough about what this reality is? What is still missing?

Best,

Jack H James

report post as inappropriate

Author Cristinel Stoica replied on Jan. 8, 2018 @ 09:16 GMT
Dear Jack,

Thank you for reading and for the comments. You ask:

> Let's assume it is a correct depiction of reality at a fundamental level, so in reality, you have found the way indivisible units operate to create everything within it, including yourself. Do you now know enough about what this reality is? What is still missing?

The point of science is to advance in understanding as much as possible. But there is no guarantee that the scientific method based on testability of hypotheses can lead to this. There's no guarantee that every truth about the universe is in our range of testability and in our range of understanding. As for the proposals I made in this essay, they are still in the phase of being mere hypotheses, supported by some arguments like those I mentioned, but far from being proven. Much is still missing, the resulting description will have, in my opinion, to be complete, without mathematical or logical inconsistencies, without parts that can be changed or replaced (see this previous comment for more details). But even so, we may never know that we found the ultimate truth and nothing is missing :)

Best regards,

Cristi




Steve Dufourny wrote on Jan. 8, 2018 @ 13:31 GMT
Hi Cristi ,

You tell us in your essay that waves are essential, I agree.That said you tell that these waves and oscillations can give all the shapes.It is a reasoning for the strings in fact.Can we be sure about this ? if the 1D primordial field is nt photonic and that the particles are notpoints and strings , so there is a problem because the spherical volumes and their motions witha finiet serie of spherical volumes where space disappears, we have also the combinations to create all shapes.

Best Regards

report post as inappropriate

Author Cristinel Stoica replied on Jan. 8, 2018 @ 13:56 GMT
Hi Steve,

Thank you for the remarks you made here and above, under David Brown's comment. And for the questions.

In my essay I don't favor photons and exclude the other particles. All fundamental particles evolve in time like waves, they propagate and interfere and interact. The difference is that those with mass have an additional mass term, so they are if you want like waves which don't propagate at the speed of light. Even leptons and quarks are governed by a wave equation like this with an additional mass term, obtained by applying once again the Dirac operator to the Dirac equation.

Best regards,

Cristi



Steve Dufourny replied on Jan. 8, 2018 @ 20:40 GMT
You are welcome,

It is relevant because we arrive still to what is an electron in fact.Dirac has made a wonderful equation, we could improve it in adding this gravitation and all these motions and oscillations of spherical volumes.The positron, the electron the photon in fact are more than we can imagine.If we insert this matter nt baryonic and if my equation is correct E=m(b)c²+m(nb)l² we could extrapolate to this weakest force , the quantum gravitation but with an equation of electron but nt relativistic.Because if all is gravitationally coded and that the finite series of spherical volumes are the key.We can consider that the method can be the same with the wave functions at the difference that they are nt relativistic.We just consider particles of gravitation instead of photons and we consider them nt relativistic and perhaps also we insert this cold.We can insert the reduce planck constant and we imrpove with the spherical volumes and we insert also the motions orbital and spinal.The dirac equatin can be improved and can permit to reach this gravitation.Photons are just like a fuel.It is not easy to find all this puzzle, if we could see the truth like that it could be well lol like a picture giving us the real truths but we are far.Friendly

report post as inappropriate


Gene H Barbee wrote on Jan. 9, 2018 @ 18:30 GMT
Cristi,

A couple of things about your essay caught my attention. I developed a model of the proton by reducing data and using it to understand some aspects of atomic physics and cosmology. Admittedly, I didn’t have all the theory. Your 3*3 group indicates that 1/3 charge is related to 3 dimensions. I kept coming up with logarithms that are multiples of N=0.0986, which I wanted to understand. I did not have the relationship to Schrodinger’s equation until Edwin Klingman encouraged me to look at fundamentals of E=e0*exp(N), where N is a natural logarithm. Derivation of the relationship is in: Barbee, Gene H., Schrodinger Fundamentals for Mesons and Baryons, October 2017, vixra:1710.0306v1.

I use probability 1 for P=1=exp(iet/H)*exp(-iet/H).



The logarithm associated with the electron is N=10.136 and with the known mass 0.511 MeV we can evaluate e0.

e0=0.511/exp(10.136)=2.02e-5 MeV

With your theory, N=0.0986 is associated with fractional charge 1/3 for each of three dimensions, the value 10.431-0.0986-0.0986-0.0986=10.136 (the -1 charged electron) and E=e0*exp(0.295)=27.2e-6 MeV (the electromagnetic field energy).

In high energy collisions, the electron can revert to a quark by absorbing an anti-e neutrino and kinetic energy. I associate N=10.333 with the mass of a quark. But N=10.431 is neutral and 10.431 -0.0986=10.333 is the fractional charge (-1/3) for the quark. Four units of 2.02e-5*exp(10.33)= 0.622=2.49 MeV, the standard model mass for the Up Quark (PDG) is 2.2 MeV.

Aside: In my model, the dimensions don’t split until after the neutron is formed (by Schrodinger based quads). When they do split, neutrons proliferate (probability 1 is maintained) and the gravitational coupling constant (1/exp(90)) is established. Your concept that the rules are everywhere the same is correct and fractional charge is related to dimensions.

report post as inappropriate

Author Cristinel Stoica replied on Jan. 10, 2018 @ 13:33 GMT
Hi Gene,

Thank you for the comments and for the interesting information. I guess that the masses of the particles, the mixing matrices for leptons and quarks, and the coupling constants should emerge from something deeper, but we can still try to find the rules even if we don't know the deepest explanation.

Best regards,

Cristi




Jochen Szangolies wrote on Jan. 11, 2018 @ 22:15 GMT
Hi Cristi,

one thing I always find striking in these contests is that there seem to be certain currents of thought that find echoes in different ways in different presentations. In some sense, it seems as though there's something in the air that many different authors are trying to capture in their different ways, some more successfully than others.

That's not to say I don't think...

view entire post


report post as inappropriate

Author Cristinel Stoica replied on Jan. 12, 2018 @ 13:49 GMT
Hi Jochen,

Thank you very much for the comments.

You said "there seem to be certain currents of thought that find echoes in different ways in different presentations. In some sense, it seems as though there's something in the air that many different authors are trying to capture in their different ways, some more successfully than others.".

I guess it must be floating in the...

view entire post




Jochen Szangolies replied on Jan. 12, 2018 @ 18:07 GMT
Hi Cristi,

well, there's always a question of how much leeway we allow ourselves in seeing similarities---with enough coarse-graining, everything starts to blur together, so maybe I'm just muddling things together that are, in fact, quite different.

But for instance, Sebastian de Haro's essay talks about 'relative fundamentality', you about the 'relativity of fundamentalness' (and...

view entire post


report post as inappropriate

Author Cristinel Stoica replied on Jan. 12, 2018 @ 20:51 GMT
Hi Jochen,

Wow, thank you for the summary! So it seems that, as in the Indra's net, ideas from different essays reflect ideas from others :)

Maybe we'll come back to this after I'll read them too, and others which will be posted in the meantime.

I will comment more on your page, about your essay, after I finish it.

Best regards,

Cristi




Marcel-Marie LeBel wrote on Jan. 12, 2018 @ 16:08 GMT
Cristi,

Nice essay. I stick to the prose ... You present the “germ” which is all the derivatives of a dynamic process. In my essay, I submit that only a dynamic process can come from nothingness, without failing the primitive rule of non-contradiction.

A single quantum “spark” could start the dynamic process but, after a number of iterations of the dynamic process, the excitation would return to its point of origin and the whole thing would collapse back to nothingness.

This is why, I “think/believe” that it requires two “quantum sparks” in order to produce a self-sustaining dynamic process. The first spark starts/creates a dynamic process that would normally evolve in symmetry, returning to its point of origin. But a second spark would disturb the normal evolution of the process making it non-symmetric. The dynamic process would not return to its point of origin and the last iteration would become the new “spark”.. for another germ, which contains and maintains the asymmetry imparted by the original second spark..

Such a two quantum sparks event is most likely exceedingly rare ...

All fun and games,

All the bests,

Marcel,

report post as inappropriate

Author Cristinel Stoica replied on Jan. 12, 2018 @ 20:54 GMT
Marcel,

Thank you for the comments. This sounds really interesting: "I submit that only a dynamic process can come from nothingness, without failing the primitive rule of non-contradiction." Nice word choice, "spark" :)

Best regards,

Cristi




Anonymous wrote on Jan. 13, 2018 @ 19:54 GMT
Hello Cristinel...

I am a tenacious advocate of a minimum unified unit of fundamentality... i.e. unity "germ"... and I find your insightful exposure of scientific dogma, cognitively refreshing.



Fundamental logic of the geometry "bench model" can be obscured by the alpha and/or numeric artifice of the semantist and/or equationist, but an operative CAD/SIM supports no illusion... i.e. it is a virtual reality not a theory.

That is to say that, it makes no difference which "geometric algebra" is applied, if the graphical spatial coordinate geometry upon which the mathematical constructs are derived, does not resolve a unified minimum unit of Spatial quantization (QI), no spatial unity "germ" can be verified.

To digitally simulate/animate the concept of Indra's net "cast in all directions"... i.e. an origin emission equal in all Spatial directions from a single point... requires resolve of an Origin Spherical Singularity Geometry, which supports infinite minimum unified volume unit shell closure expansion, as a valid CAD environment/field quantization.

REF: UQS Origin Singularity Geometry http://www.uqsmatrixmechanix.com/UQST-TVNH.php

UQS as a an Equal Qauntization Quaternion CAD environment... i.e. 6 axis... Space/Energy/Time/Info model addresses deterministic concerns by the fact that all subsequent distribution of minimum units of Energy (QE) must be resolved for the entire field in a manner consistent with emerging system intelligence (AI), on each pulse of the emission, and a minimum unit of Time (QT) is inherent in a continuously pulsed emission.

Thanks Cristinel, for sharing your insights and thus making an opportunity for comment... I would read with attention your comments on my essay entry Title: Knowledge Base (KB) Access as Fundamental to Info Processor Intelligence.

Will return to rate after I read as many essays as I have time.

S. Lingo

UQS Author/Logician

www.uqsmatrixmechanix.com

report post as inappropriate

Author Cristinel Stoica replied on Jan. 14, 2018 @ 07:05 GMT
Hello Sue,

Thank you for reading and for the comment. I'd like to come back to what you said after I read your essay, to have a better understanding. Good luck with the contest,

Cristi




Vladimir Rogozhin wrote on Jan. 14, 2018 @ 18:58 GMT
Dear Cristi,

I read with great interest your deep, comprehensive analytical essay on the problem of fundamentality. You also give very important ideas that give direction to the way out of the crisis of fundamentality, the creation of a holistic picture of the world for physicists and poets.

Good luck!

Yours faithfully,

Vladimir

report post as inappropriate

Author Cristinel Stoica replied on Jan. 14, 2018 @ 21:12 GMT
Dear Vladimir,

Thank you for comments and reading the essay. I'm looking forward to read yours, as always!

Best wishes,

Cristi




Wilhelmus de Wilde wrote on Jan. 15, 2018 @ 17:04 GMT
Hi Christi,

I read with much pleasure your exellent essay. I am going to study further on the mathematics you indicate because your conclusion :

"So the state of the universe, including the germs at all the other points of spacetime, is encoded in the germ at ach point of spacetime. Not only the field, but also spacetime itself emerges from each germ." is the conclusion that is one of the outcomes of my own conrtibution "FOUNDATIONAL QUANTUM REALITY LOOPS" and I hope that you will find some time to read and rate it. I don't mention the holographic model but also agree with Sontag, that “Time exists in order that everything doesn’t happen all at once ...(in my Total Simultaneity) and space exists so that it doesn’t all happen to you."

Thank you for making me think again

Wilhelmus de Wilde

report post as inappropriate

Author Cristinel Stoica replied on Jan. 15, 2018 @ 19:42 GMT
Hi Wilhelmus,

I am happy you enjoyed reading it, and I appreciate your comments. I look forward to read your essay, especially since you point out that our essays have so much in common.

Best wishes,

Cristi




Joe Fisher wrote on Jan. 15, 2018 @ 17:08 GMT
Dear Cristi Stoica,

You wrote: “The universe is rich in complex phenomena and situations of infinite diversity, yet somehow we seem to be able to understand it to some degree, at least partially, in terms of a small number of laws and concepts.”

My research has concluded that Nature must have devised the only permanent real structure of the Universe obtainable for the real Universe existed for millions of years before man and his finite complex informational systems ever appeared on earth. The real physical Universe consists only of one single unified VISIBLE infinite surface occurring eternally in one single infinite dimension that am always illuminated mostly by finite non-surface light.

Joe Fisher, ORCID ID 0000-0003-3988-8687. Unaffiliated

report post as inappropriate

Author Cristinel Stoica replied on Jan. 15, 2018 @ 19:44 GMT
Dear Joe Fisher,

Glad to see your comments here. From what you wrote, it seems that we share the idea that there is only one unified thing that is fundamental, even though maybe they don't look the same.

Best regards,

Cristi




Lawrence B. Crowell wrote on Jan. 16, 2018 @ 15:49 GMT
I wrote the following on mt blog area in response to your poar:

This quantum hair would show up in BMS supertranslation symmetries. I have not worked out more detailed calculations of this. In fact there is a vast amount of work to be done here. In working on foundations I offer here the prospect for some measurement or observation of what might be deeper foundations.

Of course in the end there may be no final foundation, or if there is such a foundation I suspect it is basic quantum mechanics. We might be faced with the prospect of finding layers of effective theories with respect to quantum gravity. The reason might be that quantum gravity is similar to the measurement problem and might involve self-referential encoding of quantum states. The issue of the quantum error correction problem I offer a solution involving complementarity between quantum and spacetime principles. However, this might just mean it ends up in the same conundrum as quantum measurement. Ultimately it involves quantum states encoding quantum states. Turing and Gödel rise to the occasion to tell us we can never completely understand this.

Cheers LC

report post as inappropriate

Author Cristinel Stoica replied on Jan. 18, 2018 @ 09:44 GMT
Hi Lawrence,

Thank you for the interesting details, I find this indeed difficult and needs much work. I wish you success with this research in the following!

Best wishes,

Cristi




Peter Jackson wrote on Jan. 18, 2018 @ 12:00 GMT
Cristi,

Another good piece of writing taking an interesting and, so far, unique approach. I agree and share the Christian Huygens and Bill Unruh (to an extent) approaches. Certainly relative motion through and with respect to some medium (whether condensed 'matter' or not) propagates more quanta to re-quantize signals - the effects, consequences & implications of which is what my own essay explores & identifies. (You'll see non-integer spin is also physically derived!)

We don't agree on all things but rightly agreement is NOT a scoring criteria. Yours is well considered and written, and also an interesting approach. I particularly agree the last p9 line and my work focuses on that.

Well done. Up to your usual standard and provisionally down for a high score. I do hope you'll study and discuss the conclusions of mine.

Very best

Peter

report post as inappropriate

Author Cristinel Stoica replied on Jan. 18, 2018 @ 21:16 GMT
Peter,

I appreciate your feedback, and I look forward to see your essay (especially to see how you got non-integer spin). Good luck with the contest!

Best regards,

Cristi




Login or create account to post reply or comment.

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.