CATEGORY:
It From Bit or Bit From It? Essay Contest (2013)
[back]
TOPIC:
Self-similarity, conservation of entropy/bits and the black hole information puzzle by Douglas Singleton, Elias Vagenas, & Tao Zhu
[refresh]
Login or
create account to post reply or comment.
Author Douglas Alexander Singleton wrote on Jun. 29, 2013 @ 15:11 GMT
Essay Abstract
John Wheeler coined the phrase "it from bit" or "bit from it" in the 1950s. However, much of the interest in the connection between information, i.e. "bits", and physical objects, i.e. "its", stems from the discovery that black holes have characteristics of thermodynamic systems having entropies and temperatures. This insight led to the information loss problem {what happens to the "bits" when the black hole has evaporated away due to the energy loss from Hawking radiation? In this essay we speculate on a conservative answer to this question using the assumption of self-similarity of quantum correction to the gravitational action and the requirement that the quantum corrected entropy be well behaved in the limit when the black hole mass goes to zero.
Author Bio
Douglas Singleton is a professor at California State University Fresno and currently on a leave at ITB in Bandung, Indonesia. Elias Vagenas is a professor at Research Center for Astronomy and Applied Mathematics, Academy of Athens. In Sept. 2013, he moved to Kuwait University as Associate Professor and joined the Theoretical Physics Group in the Department of Physics. Tao Zhu is a post-doc at Baylor University, and holds a position at the Institute for Advanced Physics & Mathematics,Zhejiang University of Technology, Hangzhou. All three work in the area of gravitational physics, high energy/particle physics and the interface between the two.
Download Essay PDF File
Angel Garcés Doz wrote on Jun. 29, 2013 @ 19:33 GMT
Great essay: congratulations
report post as inappropriate
Author Douglas Alexander Singleton replied on Jun. 30, 2013 @ 23:14 GMT
Thanks for the nice words. Best, Doug
Satyavarapu Naga Parameswara Gupta wrote on Jun. 30, 2013 @ 06:47 GMT
Dear Prof Douglas,
Thank you for presenting your nice essay. I saw the abstract and will post my comments soon. So you can produce material from your thinking. . . .
I am requesting you to go through my essay also. And I take this opportunity to say, to come to reality and base your arguments on experimental results.
I failed mainly because I worked against the main stream....
view entire post
Dear Prof Douglas,
Thank you for presenting your nice essay. I saw the abstract and will post my comments soon. So you can produce material from your thinking. . . .
I am requesting you to go through my essay also. And I take this opportunity to say, to come to reality and base your arguments on experimental results.
I failed mainly because I worked against the main stream. The main stream community people want magic from science instead of realty especially in the subject of cosmology. We all know well that cosmology is a subject where speculations rule.
Hope to get your comments even directly to my mail ID also. . . .
Best
=snp
snp.gupta@gmail.com
http://vaksdynamicuniversemodel.b
logspot.com/
Pdf download:
http://fqxi.org/community/forum/topic/essay-downloa
d/1607/__details/Gupta_Vak_FQXi_TABLE_REF_Fi.pdf
Part of abstract:
- -Material objects are more fundamental- - is being proposed in this paper; It is well known that there is no mental experiment, which produced material. . . Similarly creation of matter from empty space as required in Steady State theory or in Bigbang is another such problem in the Cosmological counterpart. . . . In this paper we will see about CMB, how it is generated from stars and Galaxies around us. And here we show that NO Microwave background radiation was detected till now after excluding radiation from Stars and Galaxies. . . .
Some complements from FQXi community. . . . .
A
Anton Lorenz Vrba wrote on May. 4, 2013 @ 13:43 GMT
……. I do love your last two sentences - that is why I am coming back.
Author Satyavarapu Naga Parameswara Gupta replied on May. 6, 2013 @ 09:24 GMT
. . . . We should use our minds to down to earth realistic thinking. There is no point in wasting our brains in total imagination which are never realities. It is something like showing, mixing of cartoon characters with normal people in movies or people entering into Game-space in virtual reality games or Firing antimatter into a black hole!!!. It is sheer a madness of such concepts going on in many fields like science, mathematics, computer IT etc. . . .
B.
Francis V wrote on May. 11, 2013 @ 02:05 GMT
Well-presented argument about the absence of any explosion for a relic frequency to occur and the detail on collection of temperature data……
C
Robert Bennett wrote on May. 14, 2013 @ 18:26 GMT
"Material objects are more fundamental"..... in other words "IT from Bit" is true.
Author Satyavarapu Naga Parameswara Gupta replied on May. 14, 2013 @ 22:53 GMT
1. It is well known that there is no mental experiment, which produced material.
2. John Wheeler did not produce material from information.
3. Information describes material properties. But a mere description of material properties does not produce material.
4. There are Gods, Wizards, and Magicians, allegedly produced material from nowhere. But will that be a scientific experiment?
D
Hoang cao Hai wrote on Jun. 16, 2013 @ 16:22 GMT
It from bit - where are bit come from?
Author Satyavarapu Naga Parameswara Gupta replied on Jun. 17, 2013 @ 06:10 GMT
….And your question is like asking, -- which is first? Egg or Hen?— in other words Matter is first or Information is first? Is that so? In reality there is no way that Matter comes from information.
Matter is another form of Energy. Matter cannot be created from nothing. Any type of vacuum cannot produce matter. Matter is another form of energy. Energy is having many forms: Mechanical, Electrical, Heat, Magnetic and so on..
E
Antony Ryan wrote on Jun. 23, 2013 @ 22:08 GMT
…..Either way your abstract argument based empirical evidence is strong given that "a mere description of material properties does not produce material". While of course materials do give information.
I think you deserve a place in the final based on this alone. Concise - simple - but undeniable.
view post as summary
report post as inappropriate
Author Douglas Alexander Singleton replied on Jun. 30, 2013 @ 23:17 GMT
Hi,
Many for having a look. I or one of my co-authors will try to look at you essay and send any useful comments. In my case it may take >1 week as my position at IT B is finishing and I will be traveling for a few weeks and may not have easy internet access. Best, Doug
Sreenath B N wrote on Jun. 30, 2013 @ 06:54 GMT
Dear Dr.Douglas Singleton,
I have down loaded your essay and soon post my comments on it. Meanwhile, please, go through my essay and post your comments.
Regards and good luck in the contest.
Sreenath BN.
http://fqxi.org/community/forum/topic/1827
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 1, 2013 @ 14:33 GMT
Hi,
Thanks! We look forward to any comments/advice. We will as well try to read your essay. As I mention above I am moving and doing some traveling in a week so it may take some time. Best, Doug
Domenico Oricchio wrote on Jun. 30, 2013 @ 11:02 GMT
A good essay, that I must reread with attention.
I am thinking that if the Hawking radiation transfer information from a naked, and not rotating, black hole, then each emitted photon change locally the curvature of the horizon (the change of the emitted entropy must change the surface information).
If this is true, then the surface is not smooth, and the infrared emission must contain information of the surface (spectrum and polarization information).
If there are two near naked black hole, then the change of curvature of one emission, change the other black hole absorption curvature.
Then the temperature of the black hole can be not uniform.
The problem that I have is that if you have an uniform emission (like a black body radiation) then there is only a spectrum information (so you can determine only the mass of the black hole): is the information contained in the different time of the emissions?
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 1, 2013 @ 14:57 GMT
Hi,
If I understand correctly you are worried about the spectrum of emitted Hawking radiation being purely thermal? As you correctly point out this is a problem and in fact is a key point in the information loss puzzle of BHs. The approach we use to Hawking radiation is the tunneling approach pioneering by Wilczek&Parikh, Srinvinsan&Padmanhban, Volovik, Berezin&Boyarsky&Neronov (this last group was actually the first to propose a detailed calculation of Hawking radiation as tunneling but since the paper was published in a good but not so read Russian journal it does not really get the credit it deserves).
In the tunneling approach it is possible to take into account the back reaction of space-time geometry of the BH due to the energy loss due to Hawking radiation. The effect of this back reaction can be seen in the omega^2 term in our equation (13) in the essay. For a purely thermal spectrum one only has the omega term. What we show is that this back reaction along with the assumption of self-similarity of the quantum corrections leads to a resolution to the information loss puzzle. In our essay information/entropy is not lost but comes out in the non-thermal radiation.
Best, Doug
Willard Mittelman wrote on Jun. 30, 2013 @ 14:37 GMT
Hello,
Congratulations on an excellent essay! I have a question (actually, a set of related questions), which is prompted by P. Nicolini and B. Niedner's "Hausdorff dimension of a particle path in a quantum manifold" (arXiv:1009.3267; Phys Rev D83:024017, 2011). They argue that the existence of a minimal length -- which may reasonably be regarded as a feature of quantum gravity itself -- breaks self-similarity at the minimal-length scale. In view of their argument, it's not clear that self-similarity can or should be invoked to conclude that information/entropy is well-behaved as M approaches zero; hence, there may be a problem with your proposed resolution of the black hole information paradox..
So, my set of questions is: do you reject the idea that a minimal length exists (and if so, on what do you base your rejection), or do you reject Nicolini and Niedner's argument as flawed in some way (and if so, in what way is it flawed)?
Thank you, and good luck,
Willard Mittelman
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 1, 2013 @ 10:58 GMT
Dear Dr. Mittleman,
Thanks for your excellent question. Also I hope that the proposal in our essay does not contradict Piero's (i.e. Dr. Nicolini's) and his co-worker's paper since it was Piero who got me thinking about self-similarity and who explained to me some issues with self-similarity and QM/QFT when I visited him last fall. We should have cited the paper you mention and let me...
view entire post
Dear Dr. Mittleman,
Thanks for your excellent question. Also I hope that the proposal in our essay does not contradict Piero's (i.e. Dr. Nicolini's) and his co-worker's paper since it was Piero who got me thinking about self-similarity and who explained to me some issues with self-similarity and QM/QFT when I visited him last fall. We should have cited the paper you mention and let me recommend this as an interesting and important paper.
That being said I think there is no conflict between our proposal and Piero's paper. In this paper Piero is interested in the self-similarity of a fractal space-time path. The self-similarity we propose is more abstract in that it is a similarity between the forms of the higher order corrections to the action (i.e. I_i ~ I_0 or the ith correction to the action has the same form as the 0th action and alpha_i ~ alpha_1 or the ith coefficients are similar to the 1st coefficient).
However in the essay we do make some connection between this abstract self-similarity and the more usual self-similarity of a path -- as one goes to higher order corrections I_i and alpha_i one is going higher energies and *usually* this means shorter distances. But in QG this is not necessarily the case due to the "UV/IR connection" which is discussed very nicely by Susskind and Lindesay in reference [1] of our essay. Basically the UV/IR connection means that the standard idea "higher energy --> shorter distances" breaks down at some point when gravity enters the picture. The argument very briefly is that at first as one goes to higher energy scales one does probe shorter distances as standard QM implies. However at some very large energy the particles one collides are within each others event horizon and the result of the collision is a BH with some horizon radius. The horizon radius now sets the length scale one can probe. As one increases the energy the horizon grows and thus the length scale one can probe *increases*. Thus our self-similarity is to be taken in the sense of each higher correction probing some higher energy scale. Conventionally this means shorter distance scale in QG this is not necessarily the case due to the UV/IR connection of QG.
Sorry for the long reply and feel free to ask follow up questions/comments. And also thanks for reminding of of Piero's excellent paper which we should have cited.
Best, Doug
view post as summary
Willard Mittelman replied on Jul. 12, 2013 @ 19:03 GMT
Hello Doug,
Thanks for your reply; you don't need to apologize for its length! Sorry for not replying earlier; I've been distracted by various extraneous issues.
At any rate, there's one thing that still puzzles me. I grant your point about the horizon radius increasing with the energy scale. What I'm not sure about is whether this point is applicable to the case of an evaporating black hole, in which the black hole's mass M goes to zero. For, as the horizon radius grows, it would seem that M increases, so that we're not dealing with an evaporating black hole at all. Or, if evaporation does occur here, it (arguably) happens "all at once" in a sudden burst of radiation that reflects instability of the black hole at (or below?) the Planck scale; and this doesn't seem to fit your model of an evaporation process characterized by self-similarity. Such an instability leading to evaporation is mentioned on p. 4 of Spallucci and Ansoldi's "Regular black holes in UV self-complete quantum gravity" (arXiv:1101.2760), in which the authors note the positive correlation between horizon size and energy scale. They address the above instability by arguing that the Planck scale represents a minimal size for black holes, which are stable with respect to this scale. In other words, they conclude that the horizon/energy correlation is associated with stable black holes of minimal size, rather than with evaporating black holes -- which brings us back to my question above concerning the (im)possibility of using this correlation in the case of evaporating black holes.
I apologize if I'm missing something here, or if I've misunderstood your ideas.
Thanks again for your reply.
-Willard
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 14, 2013 @ 05:28 GMT
Hi Willard,
Another good question. Actually Euro and Ansoldi’s paper has some of the same features as our paper as well as an important difference which I will try to touch on. First if one looks at figure 1 of Euro’s paper this is exactly the same point I was making about the UV/IR correspondence in my earlier reply. The hyperbola in the figure is the usual inverse relationship between...
view entire post
Hi Willard,
Another good question. Actually Euro and Ansoldi’s paper has some of the same features as our paper as well as an important difference which I will try to touch on. First if one looks at figure 1 of Euro’s paper this is exactly the same point I was making about the UV/IR correspondence in my earlier reply. The hyperbola in the figure is the usual inverse relationship between energy/mass and length i.e. length ~ (energy/mass)^{-1}. The straight line curve is the gravity/BH relationship where length (horizon radius) goes linearly the mass/energy. The point where the curves intersect is the Planck mass/energy. Thus at energy scales higher than this scale one does not probe shorter distances any more but only makes a BH with ever larger horizon.
Now the series we propose based on self-similarity should apply to an evaporating black hole. The higher terms in the series represent higher energy of quantum fluctuations and are not directly tied to the mass of the black hole (actually there is the following connection: in the standard picture of BH evaporation as the black hole mass decreases the quantum fluctuations become larger/more important). Thus our series should apply to the case of an evaporating BH since the higher terms in the series represent higher energy quantum fluctuations not (directly) greater or smaller mass of the black hole.
Now in Euro’s paper mentioned above and also in Euro’s work with Piero they introduce a new feature that we do not have and this is where the difference arises. Euro and Piero have been working with non-commutative (NC) geometry – the idea that there is a non-trivial commutator between coordinates like x and y or x and z in the same way that in standard QM there is a non-trivial commutator between x and p. This NC geometry has the effect of introducing a minimal length scale into the theory (this is the theta parameter in Euro’s paper). This has the very interesting feature that the IR/UV connection I mentioned is altered. This can be seen in figure 2 of Euro and Ansoldi’s paper – they find that there is some minimal mass for a black hole. Lower than this mass one has a particle like lump or “remnant”. Also in Euro’s work with Piero they find that as the BH evaporates the temperature starts to decreases at some point and then goes to zero even when the object has a finite mass. They call this the “scram” phase since the black hole has been turned off in a manner similar to which nuclear power plants are shut down. Thus because of the NC geometry they work with the end stage of BH evaporation is different from ours where we would have the BH completely evaporate away. This was the reason we put “a conservative solution to the information paradox” since we do not assume any UV completion or cut-off or new UV physics. And let me say this is probably a negative feature for us since probably there is some new UV physics (a la NC geometry, string theory, loop QG) that comes into play. In fact I used Euro and Piero’s “scram” mechanism is another recent work of mine on a new mechanism for inflation.
So which do I “believe” – that there is some new UV physics or that something like the “conservative” approach we use in our essay is correct? Well no one really has a good idea of what goes on at the Planck scale so the best thing is to look at different options and hope/see if there are some low energy observations one can make which would indicate experimentally which path is right. Also as it turns out there is still one free parameter in our essay, alpha_1, the first quantum correction coefficient which we cannot/do not fix. Taking alpha_1 as a free parameter leads to the possibility, even in our case, of having a remnant as in the case of Euro and Piero (although our mechanism for having a remnant is different than theirs).
Again a long reply so feel free to ask for clarifications or additional questions/comments.
Best,
Doug
view post as summary
Willard Mittelman replied on Jul. 16, 2013 @ 20:13 GMT
Hi Doug,
Thanks for your helpful comments. I think my understanding of the Spallucci/Ansoldi paper is somewhat different than yours. It seems to me that their Figure 1 is meant to show that the Planck length is a minimal length that provides a UV cutoff: see p.3 of their paper, near equation 1. This cutoff means that increasing the energy of our probes beyond the Planck energy does not reveal anything new, i.e. it does not take us further and further into the UV, since the deep-UV is shielded from us by the event horizon of a Planck-scale black hole (this "shielding" is mentioned just above Fig. 1). As a result, we cannot obtain (trans-Planckian) higher-order corrections to the action by continuing to increase the energy of our probes; and so, it would seem, the self-similarity you describe gets broken at the Planck scale, at least on Spallucci & Ansoldi's account (and even apart from NC gemoetry).
Of course, as you say, self-similarity can still be preserved by eschewing a UV cutoff altogether; but the (not implausible) possibility that quantum fluctuations get more and more unpredictable and out of control as we move deeper into the UV creates some doubts about such self-similarity. Nonetheless, as you also note, if your model can be connected with low-energy observations and supported by experimental results, then those doubts can be erased. So, I guess we'll just have to wait on experimental and observational progress in order to figure out what's really going on at the Planck scale.
Good luck, and best wishes,
Willard
report post as inappropriate
hide replies
Salvish Goomanee wrote on Jun. 30, 2013 @ 14:55 GMT
A very nice essay,
The presentation of the relation between the its(physical objects) and bits(information/entropy) as you mentioned it was indeed very interesting and captivating.
good luck ,
Salvish Goomanee
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 2, 2013 @ 05:13 GMT
Hi, Many thanks and best of luck likewise. Doug
Hoang cao Hai wrote on Jul. 1, 2013 @ 07:16 GMT
Dear three Author
An essay represents collaboration at a high level, unfortunately I did not have enough expertise to understand, nonetheless wish you success.
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 2, 2013 @ 05:15 GMT
Hi,
Thanks and feel free to ask questions. Also we will try to find to look at your essay and others who posted comments on our proposal. Best Doug
Lawrence B Crowell wrote on Jul. 1, 2013 @ 13:34 GMT
Dear Singleton, Vagenas and Zhu,
Superb paper! I just gave you guys a big shot in the arm with a top vote score. The expansion of the action S = S_0 + sum_n γ_nħ^nS_0 leads to results similar to yours. This is also interesting for in string theory the action is an expansion of the form
S = sqrt(-g)(R + α’R_{abcd}R^{abcd} + O(α’^2)
where α’ is the string parameter that is O(ħ). In the vacuum solution for the Schwarzschild black hole with R_{ab} ~ g_{ab} this will lead to an expansion similar to the one in equation 7 of this paper.
I have long been interested in the idea there are connections between string theory and LQG. This expansion, both by you and with string theory appear to assume a classical background. The connection to LQG though might remove some of the issues with background dependency of string theory. Also the AdS/CFT correspondence indicates that four dimensional spacetimes have embedded within them the same data as in 10 dimensional supergravity or superstring theory. This means that 4-dim quantum gravity with loops or knots should contain the same information as in superstring theory.
Cheers LC
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 2, 2013 @ 05:22 GMT
Hi LC,
Many thanks for reading our essay and your nice comments. I will certainly try to read your essay soon. As I mentioned I will be moving in a weak (leaving my temporary position at ITB) but should have time after this.
In regard to your comments you are correct -- our proposal still has the feature of background dependence, which as you point out is also a drawback of string theory. LQG might have some advantage in this regard but I have not followed the developments here closely enough to say anything useful -- but in the LQG talks I have seen the speakers always mention background independence as a good feature of LQG.
Best, Doug
Thomas Howard Ray replied on Jul. 19, 2013 @ 16:20 GMT
Doug et al,
Every time I hear that string theory is background dependent, I want to reach for my gun. :-) I think that even by Lee Smolin's criteria -- and *especially* applying the principle of self-similarity that you have so elegantly incorporated into your thesis, string theory forms a complete quantum field of spacetime that is self organizing and self annihilating.
I agree with Lawrence that your essay's position in the ratings does not at all reflect the quality of the work. I hope my high score to come will help.
And I hope you find interesting my
own essay that agrees with your conjecture of infinitely self similar curves. Of course, I'm sure you've seen Professor Corda's take on unitary evolution of pure quantum states, with which I also agree.
(Lawrence, I'll hopefully get to your essay soon, as well.)
All best,
Tom
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 20, 2013 @ 04:22 GMT
Hi Tom,
Thanks for reading our essay and as well reminding me that I promised read some essays starting with Lawrence's. I did download and read his essays and liked it very much so I'm heading over there to rate it now. Prof. Corda's essay is very close to our own and as well I had promised to read this as well -- it is downloaded but still needs reading :-(. Also if I understand correctly your essay has some connection with self-similarity so I should read this as well. Again thanks for your comments are reading our essay.
Best,
Doug
Christian Corda wrote on Jul. 1, 2013 @ 16:07 GMT
Dears Colleagues,
Congrats for this beautiful Essay. It is very well written and complementary to my one. You solve the black hole information paradox by showing that the number of microstates between the initial and final states is the same and this implies unitary evolution. My approach finds directly the unitary evolution through a time dependent Schrödinger equation. This permits me to write down explicitly the final state like a pure state rather than a mixed one.
If you are interested on my approach you can see my Essay here:
Christian Corda Best wishes and good luck in the Contest,
Ch.
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 2, 2013 @ 05:28 GMT
Hi Dr. Corda,
Thanks for taking a look at our essay and your comments. I agree that from reading the title and abstract it appears we are dealing with similar issues in a complementary way. There has been actually a lot of recent interest in the BH information loss puzzle. We will certainly have a look at your essay and send any useful comments/questions. As I mention above I am moving this week from ITB so it may be after one week.
In any case thanks for the comments and reading our essay and best of luck likewise. Doug
Joe Fisher wrote on Jul. 2, 2013 @ 16:24 GMT
Please excuse me Professor Singleton, Professor Vagenas and Dr. Zhu,
I am a decrepit old realist. I do not mean to be critical of your technically perfect essay; I would just like to comment on it.
“In this essay we look at the connection between physical objects, i.e. “its” and information/entropy i.e. “bits,” in the context of black hole physics."
As I have pointed out in my essay BITTERS, one real unique universe can only be eternally occurring, once. Real unique, once cannot be connected. Every real “it” is unique, once. What you appear to be doing in your essay is simply finding an abstract connection between abstract objects and abstract information/entropy in the context of abstract black hole physics.
report post as inappropriate
Joe Fisher replied on Jul. 3, 2013 @ 14:38 GMT
Can we Wheeler a black hole?
Is the nothing inside of a black hole real? No
Is the something outside of a black hole real? Yes.
Energy is made of particles and waves. What are black holes made of?
Good luck, Joe
report post as inappropriate
Hoang cao Hai wrote on Jul. 3, 2013 @ 05:03 GMT
Send to all of you
THE ADDITIONAL ARTICLES AND A SMALL TEST FOR MUTUAL BENEFIT
To change the atmosphere "abstract" of the competition and to demonstrate for the real preeminent possibility of the Absolute theory as well as to clarify the issues I mentioned in the essay and to avoid duplicate questions after receiving the opinion of you , I will add a reply to you :
1 . THE...
view entire post
Send to all of you
THE ADDITIONAL ARTICLES AND A SMALL TEST FOR MUTUAL BENEFIT
To change the atmosphere "abstract" of the competition and to demonstrate for the real preeminent possibility of the Absolute theory as well as to clarify the issues I mentioned in the essay and to avoid duplicate questions after receiving the opinion of you , I will add a reply to you :
1 . THE ADDITIONAL ARTICLES
A. What thing is new and the difference in the absolute theory than other theories?
The first is concept of "Absolute" in my absolute theory is defined as: there is only one - do not have any similar - no two things exactly alike.
The most important difference of this theory is to build on the entirely new basis and different platforms compared to the current theory.
B. Why can claim: all things are absolute - have not of relative ?
It can be affirmed that : can not have the two of status or phenomenon is the same exists in the same location in space and at the same moment of time - so thus: everything must be absolute and can not have any of relative . The relative only is a concept to created by our .
C. Why can confirm that the conclusions of the absolute theory is the most specific and detailed - and is unique?
Conclusion of the absolute theory must always be unique and must be able to identify the most specific and detailed for all issues related to a situation or a phenomenon that any - that is the mandatory rules of this theory.
D. How the applicability of the absolute theory in practice is ?
The applicability of the absolute theory is for everything - there is no limit on the issue and there is no restriction on any field - because: This theory is a method to determine for all matters and of course not reserved for each area.
E. How to prove the claims of Absolute Theory?
To demonstrate - in fact - for the above statement,we will together come to a specific experience, I have a small testing - absolutely realistic - to you with title:
2 . A SMALL TEST FOR MUTUAL BENEFIT :
“Absolute determination to resolve for issues reality”
That is, based on my Absolute theory, I will help you determine by one new way to reasonable settlement and most effective for meet with difficulties of you - when not yet find out to appropriate remedies - for any problems that are actually happening in reality, only need you to clearly notice and specifically about the current status and the phenomena of problems included with requirements and expectations need to be resolved.
I may collect fees - by percentage of benefits that you get - and the commission rate for you, when you promote and recommend to others.
Condition : do not explaining for problems as impractical - no practical benefit - not able to determine in practice.
To avoid affecting the contest you can contact me via email : hoangcao_hai@yahoo.com
Hope will satisfy and bring real benefits for you along with the desire that we will find a common ground to live together in happily.
Hải.Caohoàng
Add another problem, which is:
USE OF THE EQUATIONS AND FORMULA IN ESSAY
There have been some comments to me to questions is: why in my essay did not use the equations and formulas to interpret?
The reason is:
1. The currently equations and formulas are not able to solve all problems for all concerned that they represent.
2. Through research, I found: The application of the equations and formulas when we can not yet be determined the true nature of the problem will create new problems - there is even more complex and difficult to resolve than the original.
I hope so that : you will sympathetic and consideration to avoid misunderstanding my comments.
http://fqxi.org/community/forum/topic/1802
view post as summary
report post as inappropriate
James Lee Hoover wrote on Jul. 3, 2013 @ 18:24 GMT
If given the time and the wits to evaluate over 120 more entries, I have a month to try. My seemingly whimsical title, “It’s good to be the king,” is serious about our subject.
Jim
report post as inappropriate
Lawrence B Crowell wrote on Jul. 20, 2013 @ 13:21 GMT
Doug, et al,
This is a copy of my respond to Doug Singleton on my essay blog.
I have read several papers by Vladimir Dzhunshaliev on octonion field theory, and Merab Gogberashvili is a familiar name as well. Trying to understand how nonassociative mathematics of operators fits into physics is really the hard part. I think that quantum mechanics is purely complex, or C. Of...
view entire post
Doug, et al,
This is a copy of my respond to Doug Singleton on my
essay blog.
I have read several papers by Vladimir Dzhunshaliev on octonion field theory, and Merab Gogberashvili is a familiar name as well. Trying to understand how nonassociative mathematics of operators fits into physics is really the hard part. I think that quantum mechanics is purely complex, or C. Of course classical mechanics is R. Gauge theory can be written according to quaternions H. A lot of gauge theory is done though in standard vector form without quaternions. It is interesting though that Maxwell formulated electromagnetism, the first gauge field theory, in quaternions. Field operators in a second quantization act on a Fock space basis to give quantum amplitudes. So we have a relationship that might be heuristically written as π:H --- > C. The question is then whether there is some sort of higher level structure π:O --- > H.
Spacetime I think offers a clue. A black hole horizon has some quantum uncertainty on a scale near the string or Planck length. There will then be an associative uncertainty with three quantum fields, where one of those fields is identified near the horizon. The standard approach to QFT is to assign a harmonic oscillator at every point in space, impose equal time commutators on that spatial surface with the Wightman criterion for commutation, and work from there. Yet that spatial surface on a small scale will have some noncommutative structure and this will lead to a host of uncertainties in assigning QFT operators. If there are event horizons this should lead to an associative uncertainty.
The above “maps” between C, H and O, where a similar map π:C --- > R would be the relationship between quantum mechanics and classical mechanics, are really just forms of the Hopf fibration. The relationship between quantum and classical mechanics is of course a difficult subject in its own right. With each of these “ladders” on the Hopf fibration there is some increased uncertainty. Quantum mechanics saved physics from the UV divergence that classical mechanics predicted with the hydrogen atom. Similarly this may protect physics from divergences with black holes, such as the singularity and maybe with the current big problem of firewalls.
Thanks for the good word. I had a computer crash (virus attack etc) that erased my voting code. I also had it written down on a paper that also went missing. I have not been able to vote on papers for about a week. The FQXi people have so far not serviced my request that it be retransmitted. I have also been a bit slow in reading papers this contest cycle. I see that you have a paper in the list. I seem to remember that last year your paper was riding fairly high, where mine in contrast tanked.
Cheers LC
view post as summary
report post as inappropriate
Antony Ryan wrote on Jul. 21, 2013 @ 17:19 GMT
Dear Douglas Elias & Tao,
I enjoyed your essay and agree that "energy conservation and the tunneling picture of black hole radiation allow us to show how the original "bits" of black hole information encoded in the horizon were transformed into the "its" of the outgoing correlated Hawking photons, thus providing a potential all orders in ~ solution to the black hole information loss puzzle".
It makes perfect sense and was were I was going with my essay, but omitted some further detail which agrees with this. It would have taken another 10 pages in my case to add this aspect.
However, part of the process is apparent when we note that both sides of 0 of the Fibonacci sequence, 2 remains positive. My representation of how Hawking Radiation releases energy is the -1, such that information sits evenly at the horizon and is maintained there. But also in 1-dimensional string like structures that may become Hawking radiation.
Anyway please take a look, and I'm delighted to see such a fantastic essay doesn't contradict mine!
Best wishes and kind regards,
Antony
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 23, 2013 @ 02:28 GMT
Hi Anthony,
Thanks for the kind words and we will try to have a look at your essay since your description sounds like there may be some connection. Since you mention "...1-dimensional string like structures that may become Hawking radiation." you may be interested in the work of Samir Mathur. He has a host of papers which treat the microscopic degrees of freedom near the horizon as string derived states which he calls "fuzzballs". I do not fully understand Mathur's approach but it is interesting a has the good feature of giving explicit microstates for the black hole.
Best regards,
Doug
Antony Ryan replied on Aug. 1, 2013 @ 16:10 GMT
Doug,
Many thanks for the suggested reading - I will take a look. No panic about my essay - there are so many to get through - it is an enjoyable, but massive task.
Best wishes,
Antony
report post as inappropriate
Akinbo Ojo wrote on Jul. 23, 2013 @ 19:09 GMT
Dear Doug,
Very nice essay. Not that I dont have reservations about the black hole idea but your thoughts were well presented. So a good score from me.
On the Planck length, what likelihood that it is physically real? My essay is
here you may take a look.
Best regards,
Akinbo
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 28, 2013 @ 01:11 GMT
Hi Akinbo,
First sorry it took some time to reply -- I'm at my wife's family's home in a remote part of Thailand and my USB modem is slow. Anyway this is an interesting question about the reality of the Planck length. If one takes the physics we know at low energy as characterized by G, hbar and c (which can be combined to give a PLanck length, mass and time) one inevitably comes up with the Planck scale of 10^19 GeV, 10^{-44} sec or 10^{-35} m. But *experimentally* the only high energy scale we have directly tested is the weak scale which is at ~250-300 GeV. This was the jumping off point for the large extra dimension work of ADD which postulated that the true Planck scale coming from large extra dimensions was/could be much lower than 10^19 GeV. The last run of the LHC did not find evidence for these large extra dimensions.
I'll mention more in this regard on your discussion page.
Best,
Doug
Than Tin wrote on Jul. 25, 2013 @ 04:46 GMT
Hi Doug
Richard Feynman in his Nobel Acceptance Speech (http://www.nobelprize.org/nobel_prizes/physics/laureates/19
65/feynman-lecture.html)
said: “It always seems odd to me that the fundamental laws of physics, when discovered, can appear in so many different forms that are not apparently identical at first, but with a little mathematical fiddling you can show the relationship. And example of this is the Schrodinger equation and the Heisenberg formulation of quantum mechanics. I don’t know why that is – it remains a mystery, but it was something I learned from experience. There is always another way to say the same thing that doesn’t look at all like the way you said it before. I don’t know what the reason for this is. I think it is somehow a representation of the simplicity of nature.”
I too believe in the simplicity of nature, and I am glad that Richard Feynman, a Nobel-winning famous physicist, also believe in the same thing I do, but I had come to my belief long before I knew about that particular statement.
The belief that “Nature is simple” is however being expressed differently in my essay “Analogical Engine” linked to http://fqxi.org/community/forum/topic/1865 .
Specifically though, I said “Planck constant is the Mother of All Dualities” and I put it schematically as: wave-particle ~ quantum-classical ~ gene-protein ~ analogy- reasoning ~ linear-nonlinear ~ connected-notconnected ~ computable-notcomputable ~ mind-body ~ Bit-It ~ variation-selection ~ freedom-determinism … and so on.
Taken two at a time, it can be read as “what quantum is to classical” is similar to (~) “what wave is to particle.” You can choose any two from among the multitudes that can be found in our discourses.
I could have put Schrodinger wave ontology-Heisenberg particle ontology duality in the list had it comes to my mind!
Since “Nature is Analogical”, we are free to probe nature in so many different ways. And you have touched some corners of it.
Good Luck,
Than Tin
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 28, 2013 @ 01:35 GMT
Hi Than Tin,
A very nice and correct quote by Feynman. And after all one of his biggest achievements was to re-formulate quantum mechanics/quantum field theory in the path integral formalism i.e. he found another way to "look at" QM.
I very much like and appreciate analogies. One of my first works after grad school was to write down a Schwarzschild-like solution to the Yang-Mills equations using the analogy "GR and Yang-Mills theory are in some sense both non-Abelian gauge theories thus they should have similar solutions." The idea was that BHs provide confinement and thus these Schwarzschild-like solution of Yang-Mills theory might also provide the long sought after proper of confinement in QCD. The paper is "Exact Schwarzschild - like solution for Yang-Mills theories", D. Singleton (Virginia U.), Phys.Rev. D51 (1995) 5911-5914
e-Print: hep-th/9501052. It turns out a Soviet physicist had discovered similar solutions about 20 years earlier ("Exact Classical Solutions of Yang-Mills Sourceless Equations" by A.P. Protogenov, Phys.Lett. B67 (1977) 62-64)). Actually (half jokingly) this is one thing one finds out about theoretical physics -- everything was done earlier and better by some Soviet/Russian physicist. Again this is half jokingly.
About the use of analogies/dualities this is a very rich area of work. Almost every other paper these days has some reference to AdS/CFT which is a duality/analogy between Anti-de-Sitter space-time and conformal field theories. Thus many people appreciate dualities. I do not understand in which sense Planck's constant represents a duality so I'll go over and have a look at your essay. It may take a 1-2 days.
Best,
Doug
Deepak Vaid wrote on Jul. 28, 2013 @ 13:12 GMT
Dear Doug, Elias and Tao,
I just finished reading your essay. Your starting point is the previous result of Banerjee and Majhi (arXiv:0808.3688, arXiv:0805.2220) for the temperature of a black hole (eqn 7 in your essay) where backreaction is taken into account. The crucial point is your ansatz (eqn 9) for the form of the coefficients in the expansion of the quantum action in a power series in hbar, from which you obtain the regularized form of the entropy (eqn 10).
If correct (and I haven't checked your calculations) then your result is of great importance. It would put on a firm foundation the notion that quantum mechanics and general relativity **can be** reconciled in a self-consistent framework. However, the work remains incomplete in that underlying your calculations is the implicit assumption that the continuous, commutative nature of spacetime remains the same at all scales. As Mittelman noted in previous comments, at some point non-commutative geometry should take over, leading to a black hole remnant as the end result of black hole evaporation. There should be some simple way to reconcile your calculations with those from the NC approach.
Your work also likely has some connections with Ansari's work on black hole radiation in the framework of LQG (hep-th/0607081, arXiv:0711.1879). Overall your essay is very readable (except for the "public" who have a hard time following any mathematical arguments) and arguably deserves a place in the top three - if not at the very top.
Cheers,
Deepak
report post as inappropriate
eAmazigh M. HANNOU wrote on Jul. 29, 2013 @ 03:27 GMT
Dear Douglas,
One single principle leads the Universe.
Every thing, every object, every phenomenon
is under the influence of this principle.
Nothing can exist if it is not born in the form of opposites.
I simply invite you to discover this in a few words,
but the main part is coming soon.
Thank you, and good luck!
I rated your essay accordingly to my appreciation.
Please visit
My essay.
report post as inappropriate
Antony Ryan wrote on Jul. 29, 2013 @ 14:11 GMT
Hi Doug,
Thanks for the very helpful and interesting comments over on my page and for the suggested reading here. I really liked your essay and think you deserve to do well, so hope my rating helps.
Best wishes & kind regards,
Antony
report post as inappropriate
Author Douglas Alexander Singleton replied on Jul. 30, 2013 @ 03:33 GMT
Hi Anthony,
No problem and if you read through the dimensional reduction stuff and want to discuss feel free although this is not my area but rather than my my colleague Jonas Mureika who got me interested in this and did explain to me some of the ins and outs of the idea. Actually Jonas also mentions that certain high energy cosmic ray events seem to be anomalously planar which they claim can be taken as evidence for dimensional reduction (if at high energy one has dimensional reduction then ones claims the decay products would only be distributed in a plane or line at higher energy. I'm not sure why kinematic effects would not do this, but Jonas and the authors of the paper he cites in the paper seem to think these events are odd and Jonas's explanation is dimensional reduction.
Thanks and Best of luck,
Doug
Antony Ryan replied on Aug. 1, 2013 @ 16:12 GMT
Hello again Doug - sorry about the messages above too - going stir crazy trying to touch back with every thread I've commented on.
I certainly will look at this.
Thanks again and best wishes,
Antony
report post as inappropriate
Héctor Daniel Gianni wrote on Jul. 31, 2013 @ 22:54 GMT
Dear Douglas Singleton, Elias Vagenas, & Tao Zhu :
I am an old physician and I don’t know nothing of mathematics and almost nothing of physics,
But maybe you would be interested in my essay over a subject which after the common...
view entire post
Dear Douglas Singleton, Elias Vagenas, & Tao Zhu :
I am an old physician and I don’t know nothing of mathematics and almost nothing of physics,
But maybe you would be interested in my essay over a subject which after the common people, physic discipline is the one that uses more than any other, the so called “time”.
I am sending you a practical summary, so you can easy decide if you read or not my essay “The deep nature of reality”.
I am convince you would be interested in reading it. ( most people don’t understand it, and is not just because of my bad English).
Hawking in “A brief history of time” where he said , “Which is the nature of time?” yes he don’t know what time is, and also continue saying…………Some day this answer could seem to us “obvious”, as much than that the earth rotate around the sun…..” In fact the answer is “obvious”, but how he could say that, if he didn’t know what’s time? In fact he is predicting that is going to be an answer, and that this one will be “obvious”, I think that with this adjective, he is implying: simple and easy to understand. Maybe he felt it and couldn’t explain it with words. We have anthropologic proves that man measure “time” since more than 30.000 years ago, much, much later came science, mathematics and physics that learn to measure “time” from primitive men, adopted the idea and the systems of measurement, but also acquired the incognita of the experimental “time” meaning. Out of common use physics is the science that needs and use more the measurement of what everybody calls “time” and the discipline came to believe it as their own. I always said that to understand the “time” experimental meaning there is not need to know mathematics or physics, as the “time” creators and users didn’t. Instead of my opinion I would give Einstein’s “Ideas and Opinions” pg. 354 “Space, time, and event, are free creations of human intelligence, tools of thought” he use to call them pre-scientific concepts from which mankind forgot its meanings, he never wrote a whole page about “time” he also use to evade the use of the word, in general relativity when he refer how gravitational force and speed affect “time”, he does not use the word “time” instead he would say, speed and gravitational force slows clock movement or “motion”, instead of saying that slows “time”. FQXi member Andreas Albrecht said that. When asked the question, "What is time?", Einstein gave a pragmatic response: "Time," he said, "is what clocks measure and nothing more." He knew that “time” was a man creation, but he didn’t know what man is measuring with the clock.
I insist, that for “measuring motion” we should always and only use a unique: “constant” or “uniform” “motion” to measure “no constant motions” “which integrates and form part of every change and transformation in every physical thing. Why? because is the only kind of “motion” whose characteristics allow it, to be divided in equal parts as Egyptians and Sumerians did it, giving born to “motion fractions”, which I call “motion units” as hours, minutes and seconds. “Motion” which is the real thing, was always hide behind time, and covert by its shadow, it was hide in front everybody eyes, during at least two millenniums at hand of almost everybody. Which is the difference in physics between using the so-called time or using “motion”?, time just has been used to measure the “duration” of different phenomena, why only for that? Because it was impossible for physicists to relate a mysterious time with the rest of the physical elements of known characteristics, without knowing what time is and which its physical characteristics were. On the other hand “motion” is not something mysterious, it is a quality or physical property of all things, and can be related with all of them, this is a huge difference especially for theoretical physics I believe. I as a physician with this find I was able to do quite a few things. I imagine a physicist with this can make marvelous things.
With my best whishes
Héctor
view post as summary
report post as inappropriate
Author Douglas Alexander Singleton replied on Aug. 2, 2013 @ 09:55 GMT
Hi Hector,
Yes there are many ways to approach "time" -- Newtonian time, relativistic time, psychological time (how a person perceives time), etc. One of the most profound (in my opinion) people to deal with how people perceive and "store"/remember time was the French novelist Marcel Proust in his massive work "Remembrance of Things Past" which if one does a more direct rather than poetic translation is "Recovery of Lost Time".
A colleague of mine at CSU Fresno, Bob Levine, has done studies of how people perceive time. He has a thesis which in simplified form (hopefully not so simplified that I misrepresent) is that all/most of what people do is done in order to "buy" more time or make a given amount of time more pleasant, exciting, relaxing etc.
Anyway I will try to have a look at your essay.
Best regards,
Doug
Than Tin wrote on Aug. 1, 2013 @ 06:19 GMT
Dear All
A standard-issue big city all-glass high-rise stands across the street from my usual bus stop. When I look up the high-rise facade, I can see the reflections of the near-by buildings and the white clouds from the sky above. Even when everything else looks pretty much the same, the reflections of the clouds are different, hour to hour and day to day.
After I boarded the bus,...
view entire post
Dear All
A standard-issue big city all-glass high-rise stands across the street from my usual bus stop. When I look up the high-rise facade, I can see the reflections of the near-by buildings and the white clouds from the sky above. Even when everything else looks pretty much the same, the reflections of the clouds are different, hour to hour and day to day.
After I boarded the bus, I rushed to get a single seat facing four others on a slightly elevated platorm. From my vantage point, I can’t help noticing the shoes of the four passengers across from my seat are not the same, by either the make , the design, or the style, and that is true even when the four passengers happen to be members of the same family.
I could change the objects of my fascination from shoes to something else, to buttons on the dresses for example, but I do not think the result would have been any different. Diversity or Uniqueness would still rule the day! (There is a delightful essay on the subject of uniqueness by Joe Fisher in this contest.)
I am pretty sure people are fascinated by the diversity and the uniqueness in the world, when the other side of it is the inevitable boredom of sameness every time.
However, we have a need to know where all this beautiful and enchanting diversity comes from. Borrowing Wheelerian phraseology of “How come the quantum?”, I ask “How come the diversity?” A standard physics answer is “Entropy always increases.” (I am not a physicist, and I don’t know if that is the final answer.)
Whenever I’m out of my depth, I go back to my theory of everything (TOE), which is a mental brew of common sense, intuition, gut, analogy, judgement, etc. etc. , buttressed when I can with a little thought-experiment.
The thought-experiment is simple. Imagine cutting a circle into two precisely, identical, and equal parts. Practically, there is no way we can get the desired result, because one part will be bigger or smaller in some way.
Physics – especially quantum physics – says it don’t matter, do the superposition!
But superposition is fictive, an invention like the Macarena dance, and it has given us a cat, alive and dead at the same time.
I have heard that angels can dance on the tip of the needle, and now I’m finding out some of us can too!
Cheers and Good Luck to All,
Than Tin
view post as summary
report post as inappropriate
john stephan selye wrote on Aug. 2, 2013 @ 16:10 GMT
Having read so many insightful essays, I am probably not the only one to find that my views have crystallized, and that I can now move forward with growing confidence. I cannot exactly say who in the course of the competition was most inspiring - probably it was the continuous back and forth between so many of us. In this case, we should all be grateful to each other.
If I may, I'd like to...
view entire post
Having read so many insightful essays, I am probably not the only one to find that my views have crystallized, and that I can now move forward with growing confidence. I cannot exactly say who in the course of the competition was most inspiring - probably it was the continuous back and forth between so many of us. In this case, we should all be grateful to each other.
If I may, I'd like to express some of my newer conclusions - by themselves, so to speak, and independently of the logic that justifies them; the logic is, of course, outlined in my essay.
I now see the Cosmos as founded upon positive-negative charges: It is a binary structure and process that acquires its most elemental dimensional definition with the appearance of Hydrogen - one proton, one electron.
There is no other interaction so fundamental and all-pervasive as this binary phenomenon: Its continuance produces our elements – which are the array of all possible inorganic variants.
Once there exists a great enough correlation between protons and electrons - that is, once there are a great many Hydrogen atoms, and a great many other types of atoms as well - the continuing Cosmic binary process arranges them all into a new platform: Life.
This phenomenon is quite simply inherent to a Cosmos that has reached a certain volume of particles; and like the Cosmos from which it evolves, life behaves as a binary process.
Life therefore evolves not only by the chance events of natural selection, but also by the chance interactions of its underlying binary elements.
This means that ultimately, DNA behaves as does the atom - each is a particle defined by, and interacting within, its distinct Vortex - or 'platform'.
However, as the cosmic system expands, simple sensory activity is transformed into a third platform, one that is correlated with the Organic and Inorganic phenomena already in existence: This is the Sensory-Cognitive platform.
Most significantly, the development of Sensory-Cognition into a distinct platform, or Vortex, is the event that is responsible for creating (on Earth) the Human Species - in whom the mind has acquired the dexterity to focus upon itself.
Humans affect, and are affected by, the binary field of Sensory-Cognition: We can ask specific questions and enunciate specific answers - and we can also step back and contextualize our conclusions: That is to say, we can move beyond the specific, and create what might be termed 'Unified Binary Fields' - in the same way that the forces acting upon the Cosmos, and holding the whole structure together, simultaneously act upon its individual particles, giving them their motion and structure.
The mind mimics the Cosmos - or more exactly, it is correlated with it.
Thus, it transpires that the role of chance decreases with evolution, because this dual activity (by which we 'particularize' binary elements, while also unifying them into fields) clearly increases our control over the foundational binary process itself.
This in turn signifies that we are evolving, as life in general has always done, towards a new interaction with the Cosmos.
Clearly, the Cosmos is participatory to a far greater degree than Wheeler imagined - with the evolution of the observer continuously re-defining the system.
You might recall the logic by which these conclusions were originally reached in my essay, and the more detailed structure that I also outline there. These elements still hold; the details stated here simply put the paradigm into a sharper focus, I believe.
With many thanks and best wishes,
John
jselye@gmail.com
view post as summary
report post as inappropriate
Héctor Daniel Gianni wrote on Aug. 2, 2013 @ 18:42 GMT
Dear Douglas Singleton, Elias Vagenas, & Tao Zhu :
I am an old physician and I don’t know nothing of mathematics and almost nothing of physics,
But maybe you would be interested in my essay over a subject which after the common...
view entire post
Dear Douglas Singleton, Elias Vagenas, & Tao Zhu :
I am an old physician and I don’t know nothing of mathematics and almost nothing of physics,
But maybe you would be interested in my essay over a subject which after the common people, physic discipline is the one that uses more than any other, the so called “time”.
I am sending you a practical summary, so you can easy decide if you read or not my essay “The deep nature of reality”.
I am convince you would be interested in reading it. ( most people don’t understand it, and is not just because of my bad English).
Hawking in “A brief history of time” where he said , “Which is the nature of time?” yes he don’t know what time is, and also continue saying…………Some day this answer could seem to us “obvious”, as much than that the earth rotate around the sun…..” In fact the answer is “obvious”, but how he could say that, if he didn’t know what’s time? In fact he is predicting that is going to be an answer, and that this one will be “obvious”, I think that with this adjective, he is implying: simple and easy to understand. Maybe he felt it and couldn’t explain it with words. We have anthropologic proves that man measure “time” since more than 30.000 years ago, much, much later came science, mathematics and physics that learn to measure “time” from primitive men, adopted the idea and the systems of measurement, but also acquired the incognita of the experimental “time” meaning. Out of common use physics is the science that needs and use more the measurement of what everybody calls “time” and the discipline came to believe it as their own. I always said that to understand the “time” experimental meaning there is not need to know mathematics or physics, as the “time” creators and users didn’t. Instead of my opinion I would give Einstein’s “Ideas and Opinions” pg. 354 “Space, time, and event, are free creations of human intelligence, tools of thought” he use to call them pre-scientific concepts from which mankind forgot its meanings, he never wrote a whole page about “time” he also use to evade the use of the word, in general relativity when he refer how gravitational force and speed affect “time”, he does not use the word “time” instead he would say, speed and gravitational force slows clock movement or “motion”, instead of saying that slows “time”. FQXi member Andreas Albrecht said that. When asked the question, "What is time?", Einstein gave a pragmatic response: "Time," he said, "is what clocks measure and nothing more." He knew that “time” was a man creation, but he didn’t know what man is measuring with the clock.
I insist, that for “measuring motion” we should always and only use a unique: “constant” or “uniform” “motion” to measure “no constant motions” “which integrates and form part of every change and transformation in every physical thing. Why? because is the only kind of “motion” whose characteristics allow it, to be divided in equal parts as Egyptians and Sumerians did it, giving born to “motion fractions”, which I call “motion units” as hours, minutes and seconds. “Motion” which is the real thing, was always hide behind time, and covert by its shadow, it was hide in front everybody eyes, during at least two millenniums at hand of almost everybody. Which is the difference in physics between using the so-called time or using “motion”?, time just has been used to measure the “duration” of different phenomena, why only for that? Because it was impossible for physicists to relate a mysterious time with the rest of the physical elements of known characteristics, without knowing what time is and which its physical characteristics were. On the other hand “motion” is not something mysterious, it is a quality or physical property of all things, and can be related with all of them, this is a huge difference especially for theoretical physics I believe. I as a physician with this find I was able to do quite a few things. I imagine a physicist with this can make marvelous things.
With my best whishes
Héctor
view post as summary
report post as inappropriate
Than Tin wrote on Aug. 3, 2013 @ 19:01 GMT
Dear All
Let me go one more round with Richard Feynman.
In the Character of Physical Law, he talked about the two-slit experiment like this “I will summarize, then, by saying that electrons arrive in lumps, like particles, but the probability of arrival of these lumps is determined as the intensity of waves would be. It is this sense that the electron behaves sometimes like a particle and sometimes like a wave. It behaves in two different ways at the same time.
Further on, he advises the readers “Do not keep saying to yourself, if you can possibly avoid it. ‘But how can it be like that?’ because you will get ‘down the drain’, into a blind alley from which nobody has yet escaped. Nobody knows how it can be like that.”
Did he says anything about Wheeler’s “It from Bit” other than what he said above?
Than Tin
report post as inappropriate
Christian Corda wrote on Aug. 6, 2013 @ 08:26 GMT
Dears Colleagues,
I have just ended to re-read your intriguing Essay. As I previously told you, it is complementary to my one and, in my opinion, it further improves the elegant approach by Zhang, Cai, Zhan and You. Thanks also to have stressed the importance of the black hole information paradox within the theme of this Essay Competition. In fact, there is some guy who strangely claims that it does not address the core questions of this Essay Contest.
In any case, I enjoyed a lot in reading your Essay and I think that your results are of fundamental importance, not only for the core of this Essay Contest, but also for the whole theoretical physics. Thus, I am going to give you the top rate.
Cheers,
Ch.
report post as inappropriate
Paul Borrill wrote on Aug. 6, 2013 @ 21:25 GMT
Douglas, Elias, Tao - congratulations on an outstanding essay. I’m glad I managed to read it and get my rating in to help before the end of the contest.
I see a background of time assumption in your equations. I wonder what correlated photons of Hawking radiation would look like under the subtime interpretation?:
http://fqxi.org/data/forum-attachments/Borri
ll-TimeOne-V1.1a.pdf
(sorry if the fqxi web site splits this url up, I haven’t figured out a way to not make it do that).
Kind regards, Paul
report post as inappropriate
Author Douglas Alexander Singleton replied on Aug. 7, 2013 @ 13:26 GMT
Hi Paul,
A technical measure of the correlation, C, between photons of energy E_1 and E_2 emitted is given by the somewhat opaque expression
C(E_1+E_2 ; E_1, E_2) = ln(Gamma(E_1+E_2))-ln(Gamma(E_1)Gamma(E_2))
where Gamma(X) is the probability for a photon of energy X to tunneling through the horizon and appear as Hawking radiation. Essentially one is comparing emitting one photon with energy E_1+E_2 versus two separate photons E_2 and E_1. This is discussed in more detail in an early articl eon the subject by my co-author Elias. The exact reference is
"Hawking radiation as tunneling through the quantum horizon",
Michele Arzano, A.J.M. Medved, Elias C. Vagenas, JHEP 0509 (2005) 037
e-Print: hep-th/0505266
For a truly thermal spectrum the correlation function above is zero -- C=0 -- and one says the photons are uncorrelated. If C=/=0 there is some correlation.
Now the next question how woul done check this experimentally -- until recently I would have said "I don't know" and in fact I still have to say this, but now I know where to look. There is a recent PRD article
"Towards experimentally testing the paradox of black hole information loss"
Baocheng Zhang, Qing-yu Cai, Ming-sheng Zhan, Li You (Tsinghua U., Beijing). Phys.Rev. D87 (2013) 4, 044006
e-Print: arXiv:1302.1341 [gr-qc]
which from the title and also abstract (the paper is downloaded and sitting on my laptop but still needs reading) promises to give a way to test the correlations of emitted photons. I'm not sure if the proposal is in terms of analogy systems or what but it is interesting and might be address your question about what correlated photons would look like in the lab.
Best,
Doug
David Levan wrote on Aug. 7, 2013 @ 09:38 GMT
Best of Luck for the Magnificent Eight !
I am throught the 180 essays, all rated. For me 2/3 of them were poor and other 1/6 curious. The rest (1/6) have I rated over 4/10.
You are among the authors of the top essays from my sight - alphabetically :
Corda, D'Ariano, Maguire, Rogozhin, Singleton, Sreenath, Vaid, Vishwakarma,
and I hope one of you will be the winner. (Please, don't rate my essay.)
David
report post as inappropriate
Author Douglas Alexander Singleton wrote on Aug. 7, 2013 @ 13:28 GMT
Hi David,
Thanks for reading our essay the kind words and rating.
Best,
Doug
Willard Mittelman wrote on Aug. 9, 2013 @ 04:05 GMT
Hi Doug,
I've just posted the remarks below at my own essay; but because they're so late, you may have stopped looking for them there, so I'm posting them here too.
I apologize for being so late in responding to your stimulating comments and thoughts; but hopefully, it's still better late than never! I had written a somewhat lengthy response earlier, but for some reason it wouldn't post; so, I'm going to try a condensed version to see if I can get anything posted.
Taking your "further unrelated question" first, my "N" is related to that of causal set theory, in which N is the total number of causet elements (CEs) in the four-volume constituted by the past light cone of a suitable observer. This number is way too large for each CE to be a degree of freedom (dof), and hence it is not of the same magnitude as the cosmological entropy S. However, on my account, the number of uncanceled volume-fluctuations of CEs, which is on the order of N's square root at any given time t, is roughly comparable to S. (I don't view these uncanceled CEs as actual dof's, but they are, in some ways, "something like" dof's, at least).
I agree with your point about the desirability of unifying inflation and late-time dark energy, and I find your idea of linking inflation with Hawking radiation very interesting. My own account of dark energy appeals to the nature of discrete spacetime and its fluctuations, which may also be relevant to the explanation of inflation, as your own work suggests. Of course, the particular aspects of discrete spacetime that are crucial to inflation may be (partly) different than those connected with dark energy; but even so, there's still a significant amount of "unification" here.
Good luck; hope you win a prize!
-Willard
report post as inappropriate
Author Douglas Alexander Singleton replied on Aug. 10, 2013 @ 06:52 GMT
Hi Willard,
I missed your original reply. I haven't figure out how to get announcements from other threads I'm involved with. Thanks for the well wishes.
With the new Planck results there is a lot of papers on inflation trying to match u with this data. Steinhardt and colleagues even published a recent PLB questioning the inflationary picture in light of the Planck data.
Best,
Doug
Willard Mittelman wrote on Aug. 9, 2013 @ 13:16 GMT
Just a couple of addenda to the comments I recently posted: (i) Barrow & Shaw themselves seem to take an agnostic stance about the cause(s) of inflation, which makes some sense in view of the fact that it's simply unclear whether vacuum energy alone can explain, e.g., the origin of intergalactic magnetic fields, as well as being unclear whether such fields should be connected with inflation at all. It's possible, at least, that any inflationary theory that's able to explain a wide range of phenomena will be somewhat lacking with respect to simplicity and "unity."
(ii) I admit that the idea of nonlocal cancellation of spacetime fluctuations on a cosmological scale, and the related idea of the spacetime causal set of our universe as a kind of "particle," is rather extreme and crazy-sounding (and possibly just downright crazy!). Fwiw, I actually arrived at this idea by trying to address some issues connected with the account of dark energy in Ahmed, Dodelson, Greene and Sorkin's "Everpresent Lambda" paper. In particular, I was concerned about the criticism made by John Barrow ("A strong constraint on ever-present Lambda") regarding this account's conflict with cosmological observations. It may be that the ideas I'm advancing create too many new issues and problems; but I thought it was at least worth making an attempt to articulate and develop such ideas.
Anyway, thanks for your insightful comments, and for reading my essay. And, again, best of luck.
Willard
report post as inappropriate
Christian Corda wrote on Oct. 31, 2013 @ 17:05 GMT
Dears Colleagues,
Congrats for the Prize.
You, Jennifer Nielsen and Cistnel Stoica are the only positive news on the ridiculous and shameful "results" of this Essay Contest.
Cheers,
Ch.
report post as inappropriate
Login or
create account to post reply or comment.