Search FQXi


If you are aware of an interesting new academic paper (that has been published in a peer-reviewed journal or has appeared on the arXiv), a conference talk (at an official professional scientific meeting), an external blog post (by a professional scientist) or a news item (in the mainstream news media), which you think might make an interesting topic for an FQXi blog post, then please contact us at forums@fqxi.org with a link to the original source and a sentence about why you think that the work is worthy of discussion. Please note that we receive many such suggestions and while we endeavour to respond to them, we may not be able to reply to all suggestions.

Please also note that we do not accept unsolicited posts and we cannot review, or open new threads for, unsolicited articles or papers. Requests to review or post such materials will not be answered. If you have your own novel physics theory or model, which you would like to post for further discussion among then FQXi community, then please add them directly to the "Alternative Models of Reality" thread, or to the "Alternative Models of Cosmology" thread. Thank you.

Contests Home


Previous Contests

What Is “Fundamental”
October 28, 2017 to January 22, 2018
Sponsored by the Fetzer Franklin Fund and The Peter & Patricia Gruber Foundation
read/discusswinners

Wandering Towards a Goal
How can mindless mathematical laws give rise to aims and intention?
December 2, 2016 to March 3, 2017
Contest Partner: The Peter and Patricia Gruber Fund.
read/discusswinners

Trick or Truth: The Mysterious Connection Between Physics and Mathematics
Contest Partners: Nanotronics Imaging, The Peter and Patricia Gruber Foundation, and The John Templeton Foundation
Media Partner: Scientific American

read/discusswinners

How Should Humanity Steer the Future?
January 9, 2014 - August 31, 2014
Contest Partners: Jaan Tallinn, The Peter and Patricia Gruber Foundation, The John Templeton Foundation, and Scientific American
read/discusswinners

It From Bit or Bit From It
March 25 - June 28, 2013
Contest Partners: The Gruber Foundation, J. Templeton Foundation, and Scientific American
read/discusswinners

Questioning the Foundations
Which of Our Basic Physical Assumptions Are Wrong?
May 24 - August 31, 2012
Contest Partners: The Peter and Patricia Gruber Foundation, SubMeta, and Scientific American
read/discusswinners

Is Reality Digital or Analog?
November 2010 - February 2011
Contest Partners: The Peter and Patricia Gruber Foundation and Scientific American
read/discusswinners

What's Ultimately Possible in Physics?
May - October 2009
Contest Partners: Astrid and Bruce McWilliams
read/discusswinners

The Nature of Time
August - December 2008
read/discusswinners

Forum Home
Introduction
Terms of Use

Order posts by:
 chronological order
 most recent first

Posts by the author are highlighted in orange; posts by FQXi Members are highlighted in blue.

By using the FQXi Forum, you acknowledge reading and agree to abide by the Terms of Use

 RSS feed | RSS help
RECENT POSTS IN THIS TOPIC

Richard Kingsley-Nixey: on 10/5/12 at 18:05pm UTC, wrote Emily I don't agree with all your propositions, but scoring is not about...

Sergey Fedosin: on 10/4/12 at 5:46am UTC, wrote If you do not understand why your rating dropped down. As I found ratings...

Yuri Danoyan: on 10/2/12 at 16:23pm UTC, wrote Please don't forget please impartially evaluate my essay

Jonathan Kerr: on 10/1/12 at 16:38pm UTC, wrote Sorry Emily, just to correct a mistake in the first line above, you were...

Jonathan Kerr: on 10/1/12 at 11:44am UTC, wrote Hello Emily, Thank you for your reply. I agree that if we have to question...

Emily: on 10/1/12 at 1:00am UTC, wrote I certainly agree with you that our knowledge is limited in these fields,...

Jonathan Kerr: on 9/30/12 at 22:31pm UTC, wrote Just to put that in a wider context, and explain why to me it seems...

Jonathan Kerr: on 9/30/12 at 10:02am UTC, wrote Hello Emily, It seems very strange to argue for the possible unreliability...


RECENT FORUM POSTS

George Musser: "Imagine you could feed the data of the world into a computer and have it..." in Will A.I. Take Over...

Steve Dufourny: "Personally Joe me I see like that ,imagine that this infinite eternal..." in First Things First: The...

Steve Dufourny: "Joe it is wonderful this,so you are going to have a nobel prize in..." in First Things First: The...

Robert McEachern: ""I'm not sure that the 'thing as it is' is irrelevant." It is not. It is..." in Schrödinger’s Zombie:...

Steve Dufourny: "lol Zeeya it is well thought this algorythm selective when names are put in..." in Mass–Energy Equivalence...

Steve Dufourny: "is it just due to a problem when we utilise names of persons?" in Mass–Energy Equivalence...

Georgina Woodward: "I suggested the turnstiles separate odd form even numbered tickets randomly..." in Schrödinger’s Zombie:...


RECENT ARTICLES
click titles to read articles

First Things First: The Physics of Causality
Why do we remember the past and not the future? Untangling the connections between cause and effect, choice, and entropy.

Can Time Be Saved From Physics?
Philosophers, physicists and neuroscientists discuss how our sense of time’s flow might arise through our interactions with external stimuli—despite suggestions from Einstein's relativity that our perception of the passage of time is an illusion.

Thermo-Demonics
A devilish new framework of thermodynamics that focuses on how we observe information could help illuminate our understanding of probability and rewrite quantum theory.

Gravity's Residue
An unusual approach to unifying the laws of physics could solve Hawking's black-hole information paradox—and its predicted gravitational "memory effect" could be picked up by LIGO.

Could Mind Forge the Universe?
Objective reality, and the laws of physics themselves, emerge from our observations, according to a new framework that turns what we think of as fundamental on its head.


FQXi FORUM
October 17, 2019

CATEGORY: Questioning the Foundations Essay Contest (2012) [back]
TOPIC: Underlying Assumptions in Physics: The Relationship Between Evidence and Theory by Emily Christine Adlam [refresh]
Bookmark and Share
Login or create account to post reply or comment.

Author Emily Christine Adlam wrote on Aug. 30, 2012 @ 12:41 GMT
Essay Abstract

Traditionally, scientific enquiry has presupposed a relatively simple relationship between our empirical evidence and the facts of reality. For example, we presume that our memories and records are approximately correct representations of the actual course of past history, and we presume that most of the events which actually occur are events made either certain or probable by underlying physical laws. Such assumptions seem to be necessary if ordinary scientific methods of formulating deterministic or probabilistic laws are ever to get off the ground. But developments in the fields of both statistical mechanics and quantum mechanics have begun to give us specific reasons to question these assumptions, since both theories explicitly undermine our beliefs about the causal links between records of the past and actual past events. In light of such considerations, questions about the reliability of memories and records cannot be relegated to philosophical scepticism, but must be taken seriously as part of contemporary science and as indicators of possible new directions for the development of science.

Author Bio

Emily Adlam is reading Physics and Philosophy at the University of Oxford.

Download Essay PDF File

Bookmark and Share
post approved


Pentcho Valev wrote on Aug. 31, 2012 @ 05:02 GMT
Clausius' famous principle "ENTROPY ALWAYS INCREASES" (which, according to A. Eddington, holds "the supreme position among the laws of Nature") was deduced in 1865 in the way presented by Jos Uffink on p. 37 in his "Bluff your Way in the Second Law of Thermodynamics":

http://philsci-archive.pitt.edu/archive/00000313/

Jos Uffink, Bluff your Way in the Second Law of Thermodynamics, p. 37: "Hence we obtain: THE ENTROPY PRINCIPLE (Clausius' version) For every nicht umkehrbar [irreversible] process in an adiabatically isolated system which begins and ends in an equilibrium state, the entropy of the final state is greater than or equal to that of the initial state. For every umkehrbar [reversible] process in an adiabatical system, the entropy of the final state is equal to that of the initial state."

Clearly Clausius' deduction is based on three premises:

PREMISE 1: The entropy is a state function.

PREMISE 2: Clausius' inequality (formula 10 on p. 33) is correct.

PREMISE 3: Any irreversible process can be closed by a reversible process to become a cycle.

All the three premises are unproven; PREMISE 3 is almost obviously false:

http://philsci-archive.pitt.edu/archive/00000313/

Jos Uffink, p.39: "A more important objection, it seems to me, is that Clausius bases his conclusion that the entropy increases in a nicht umkehrbar [irreversible] process on the assumption that such a process can be closed by an umkehrbar [reversible] process to become a cycle. This is essential for the definition of the entropy difference between the initial and final states. But the assumption is far from obvious for a system more complex than an ideal gas, or for states far from equilibrium, or for processes other than the simple exchange of heat and work. Thus, the generalisation to all transformations occurring in Nature is somewhat rash."

Pentcho Valev pvalev@yahoo.com

Bookmark and Share
report post as inappropriate

Pentcho Valev replied on Sep. 1, 2012 @ 06:55 GMT
50 years ago the following challenges to the second law of thermodynamics would have produced a frenzy atmosphere in the scientific community. Nowadays scientists couldn't care less:

http://arxiv.org/abs/1203.0161

Self-Charged Graphene Battery Harvests Electricity from Thermal Energy of the Environment, Zihan Xu et al: "Moreover, the thermal velocity of ions can be maintained by...

view entire post


Bookmark and Share
report post as inappropriate

Emily replied on Sep. 4, 2012 @ 07:13 GMT
Thank you for your comments! It's certainly true that both the concept of entropy and the second law of thermodynamics are plagued with difficulties both in derivation and interpretation, and this essay is not intended to be a defence of either. My discussion of 'the entropy of the universe' is mainly a way of pointing to the appearance of temporal asymmetry - according to our memories and records there seems to be a kind of directedness in the way that events come about, yet that direction doesn't seem to come from the underlying microdynamics and therefore needs to be accounted for in terms of a further assumption about the initial conditions. It's convenient to frame that assumption in terms of the initial low entropy of the universe, but the argument isn't dependent on specific assumptions about the nature of entropy and/or the status of the second law.

Bookmark and Share
report post as inappropriate

Pentcho Valev replied on Sep. 4, 2012 @ 14:45 GMT
Emily,

You wrote: "It's convenient to frame that assumption in terms of the initial low entropy of the universe, but the argument isn't dependent on specific assumptions about the nature of entropy and/or the status of the second law."

But "initial low entropy" already presupposes some "specific assumptions about the nature of entropy and/or the status of the second law". By the way, at the end of his paper, Uffink in fact rejects the law of entropy increase:

http://philsci-archive.pitt.edu/archive/00000313/

Jos Uffink, Bluff your Way in the Second Law of Thermodynamics, p. 94: "This summary leads to the question whether it is fruitful to see irreversibility or time-asymmetry as the essence of the second law. Is it not more straightforward, in view of the unargued statements of Kelvin, the bold claims of Clausius and the strained attempts of Planck, to give up this idea? I believe that Ehrenfest-Afanassjewa was right in her verdict that the discussion about the arrow of time as expressed in the second law of the thermodynamics is actually a RED HERRING."

Pentcho Valev pvalev@yahoo.com

Bookmark and Share
report post as inappropriate


Jose P. Koshy wrote on Aug. 31, 2012 @ 12:12 GMT
Entropy and quantum mechanics are purely mathematical. In my opinion, applying such mathematical concepts to explain any physical system is incorrect.This leads to such ideas that question our belief regarding 'relationship between our empirical evidence and the facts of reality'.A clear demarcation between physics and mathematics will remove all such non-classical concepts.

We require a physical definition of entropy.When the universe expands, the stars contract. This can be regraded as the entropy of the stars decrease when the entropy of the universe increases. This may be a reversible process.As long as the expansion continues, past will be past and future, future. If it starts contracting, it will be only a cyclical change and not a going back into the past.

Bookmark and Share
report post as inappropriate

Author Emily Christine Adlam replied on Sep. 4, 2012 @ 07:18 GMT
Thank you for this comment! I agree that it's certainly important to make a distinction between actual physics and the mathematics we use to formalize that physics, and it's true that the physical definition of entropy is problematic. I also agree that we would not start 'going back into the past' if the universe were to start contracting - the difficulty about the past that I wished to point to was merely that, based on standard dynamical theories and without addditional assumptions like the past hypotheses, retrodiction would suggest that 'entropy' (whatever that means physically) was probably higher in the past than it is now, and moreoever that it's difficult to see how our memories/records can directly testify against this.

Bookmark and Share



Member George F. R. Ellis wrote on Sep. 3, 2012 @ 15:10 GMT
Dear Emily Adnam

I appreciate your skeptical view of the nature of evidence, and how we must be cautious in this regard. However I do believe you are giving much too much credence to the Boltzmann Brain argument.

You talk about the histories stored in our memories, but there is much more to history than that: it is for example also stored in the geological record, as well as in the...

view entire post


Bookmark and Share
report post as inappropriate

Member Ian Durham replied on Sep. 4, 2012 @ 01:07 GMT
Hi Emily and George,

I seem to be in the strange position of having to disagree with both of you. On the one hand, I agree with George that it seems a bit absurd to assume that the appearance of your essay from random fluctuations must be much more probable than were it to have been written by a conscious person. On the other hand, I agree with Emily that random fluctuations can nevertheless give rise to complex phenomena. My reason for both stances is the same: "highly improbable" is not the same thing as "impossible."

This seems to be a common trait among humans in regard to our interpretation of statistical phenomena: an event that occurs is a priori assumed to be highly likely by dint of the fact that it has occurred in the first place. In light of additional information, the event's relative likelihood may be revised downward, but the fact of the matter is that it is initially assumed to be high simply because it happened. But even highly unlikely events still happen. My neighbor has been struck by lightning. If he grew up ignorant and isolated, he might be led to conclude that *everyone* gets struck by lightning which is absurd.

In short, an equally valid interpretation is that our memories are perfectly valid and correct but that the universe simply evolved in a highly unlikely (but not impossible) way. For example, suppose there is a spectrum of *possible* universes (these would be *actual* universes in an Everettian interpretation). Even if only a single universe occurs, nothing says it absolutely must be one of the more likely candidates. That's the point of a random process.

Also, one other point I wanted to make: entropy depends on how you define it. It is entirely possible to define it in such a way that a low entropy in the early universe is not unexpected.

Regardless of my aforementioned gripes, it was a nice essay. I found it to be well-written and carefully considered.

Ian Durham

Bookmark and Share
report post as inappropriate

Author Emily Christine Adlam replied on Sep. 4, 2012 @ 07:51 GMT
Thank you both for your replies!

First, I'm sorry if I gave the impression that the difficulty with evidence is primarily concerned with memory. The same arguments apply to any kind of record of the past which is accessible in the present, including geological records and so on - it's still more likely that such records were produced by spontaneous fluctuations than that the past they...

view entire post


Bookmark and Share


Stefan Weckbach replied on Sep. 6, 2012 @ 06:39 GMT
Dear Emily,

i read your essay and i realized that you thought *deeply* about the consistence of our theories with our human experience of time, constancy, space and retrodiction. It was a joy to read your lines of reasoning!

May i comment that all your questions about the real physical circumstances could be answered by introducing my concept of "physical retrodiction". How this works is outlined in my own essay. You don't need to assume Many Worlds or a universally valid wave function. The wave function only does "collapse", because every measurement is both - an initial state and a final state. These states get rendered permanently to be consistent to each other via entanglement - and this is the reason why it *seems* for us that someting like a wave function does collapse. Its only our biased classical, mechanical view that induces the reasoning about a collapse.

Thank you again for your very exciting essay!

Stefan Weckbach

Bookmark and Share
report post as inappropriate


Yuri Danoyan wrote on Sep. 3, 2012 @ 21:32 GMT
Dear Emily Adnam

What do you think about victimization second law of termodinamics?

see http://fqxi.org/community/forum/topic/1413

Bookmark and Share
report post as inappropriate

Yuri Danoyan replied on Sep. 6, 2012 @ 13:31 GMT
Emily

You are ignoring my post.

Why?

Bookmark and Share
report post as inappropriate

Emily replied on Sep. 6, 2012 @ 14:31 GMT
Hello! I'm sorry that I took some time to reply, I have been busy.

I'm sorry, but I don't entirely understand your question - what do you mean by 'victimization' with regard to the second law?

Bookmark and Share
report post as inappropriate

Yuri Danoyan replied on Sep. 6, 2012 @ 21:00 GMT
Drew attention to quote from Dirac in my essay:

"It seems very likely that sometime in the future there will be an improved quantum mechanics, which will include a return to the causation and which justify the view of Einstein. But such a return to the causality may be possible only at the cost of failure of some other fundamental ideas, which we now accept undoubtedly. If we are going to restore causality, we shall have to pay for it and now we can only guess what idea must be sacrificed.” P.A.M. Dirac. Directions in Physics

I mean to sacrifce second law of thermodynamics

Victimization of second law....

Bookmark and Share
report post as inappropriate


Robert H McEachern wrote on Sep. 4, 2012 @ 03:13 GMT
Emily,

In your abstract, you state that:

"scientific enquiry has presupposed a relatively simple relationship between our empirical evidence and the facts of reality... Such assumptions seem to be necessary... But developments ... give us specific reasons to question these assumptions."

The simple relationship between evidence and reality, need not be questioned. Physical theories merely produce numerical predictions, that either agree or disagree with observations. They do nothing else. In particular, they provide no evidence, either for or against, all the metaphysical "interpretations" that have the attached to the theories. The theories can do little more than "fit curves to data", and they can only even do that, in cases where the data has an extremely low information content - that is what makes the data "predictable", by the theory, in the first place.

Since the "interpretations of the theory" invariably have a higher information content than the theories themselves, the "interpretations" cannot possibly be contained within the theories themselves; they have simply been made-up and slapped-on. Hence, while experiments may confirm that the theory "fits" the data, they cannot provide any evidence that the "interpretation" fits the theory.

Rather than questioning the "reliability of memories", physicists need to question the "meaning" and "significance" that they have attached to them.

Bookmark and Share
report post as inappropriate

Author Emily Christine Adlam replied on Sep. 4, 2012 @ 08:02 GMT
While I would certainly agree that we need to be careful about differentiating between the content of a theory and its interpretation, I'd argue that theories can't be divorced entirely from 'interpretation' without rendering them incapable of making any predictions that can be compared to observation - at the very least, we need some specification of which mathematical features of the theory are meant to correspond to particular features of our evidence.

Saying that physicists need to question the 'significance' of memory is a nice way of putting the point I want to make - that memories are just a form of data, and perhaps we need to stop interpreting that data quite so literally.

Bookmark and Share


Robert H McEachern replied on Sep. 4, 2012 @ 13:18 GMT
Your statement that "we need some specification of which mathematical features of the theory are meant to correspond to particular features of our evidence" is exactly on target. It is discussed extensively in my own essay. Unfortunately, as I indicated there, making such a correspondence provides no evidence that it is correct.

The problem is that the "meaning" of a high information content signal cannot be deduced from any observation of the signal, for the simple reason that "high information content" is synonymous with the fact that the signal itself is devoid of meaning. In effect, the signal is nothing more than a "serial number", whose "meaning" can only be deduced by "looking it up" within the memory of an entity that knows, a priori, the correspondence between the serial number and its "meaning's" address in memory.

Physicists do indeed need to "stop interpreting that data quite so literally." Complex entities respond to data observations "symbolically" as well as "physically." Physical responses behavior as though data measurements are "real numbers", but symbolic responses behave as though they are "serial numbers." The entire information content of Physical behaviors can easily be represented, by short sequences of symbols, known as "equations." The vastly larger information content of the initial conditions, in the memory of a complex observer, cannot. For such observers, it is the initial conditions, not the equations, that determine all "interesting" behaviors, because that is the only thing that gives any meaning to observed "serial numbers."

Bookmark and Share
report post as inappropriate


S Halayka wrote on Sep. 4, 2012 @ 15:54 GMT
I believe that the act of contemplating the possibility of past intervention in human affairs by demons (aliens, gods, God, whatever the label shall be, just as long as they evolved over a great period of time like we did) is no less scientific than the act of contemplating the possibility of the many worlds scenario.

I say this wholeheartedly, because even if one were to somehow logically disprove many worlds here, there is still the possibility that there is another world in which this logic was proven false because it was based on some incomplete information. I also say this wholeheartedly, because the simplest thoughts about the origin of life point directly to the laws of thermodynamics themselves -- life is special, but not that special.

Anyway, who knows? Perhaps one day we will be able to communicate with aliens, as well as be able to hop between the branches of the many worlds. Until then, my bet is on aliens first, and possibly last.

Bookmark and Share
report post as inappropriate


Member Benjamin F. Dribus wrote on Sep. 6, 2012 @ 03:35 GMT
Dear Emily,

You write exceptionally well. You give a balanced and mature analysis that reveals a strong grasp of the issues you address, without being carried away by any particular argument. I have a few thoughts for you to consider.

1. Of course you are correct that classical microdynamics is time-symmetric, but we know beyond reasonable doubt that classical statistical...

view entire post


Bookmark and Share
report post as inappropriate

Emily replied on Sep. 7, 2012 @ 09:25 GMT
Thank you very much for your comments!

1) I've read your essay and Dr Barbour's with interest - if anything, I would say that the points I've raised here give reason to take these sorts of speculations seriously, since the problems with classical statistical mechanics would make it unsatisfactory even if we didn't have other good reasons to view it as non-fundamental.

2) I certainly wouldn't advocate giving up all or even most of the pragmatic assumptions that we need to get physics started. However, I do think we should keep in mind that they are assumptions, and be willing to question them (judiciously) in circumstances where that becomes appropriate, such as our current predicament with regard to statistical mechanics and quantum mechanics.

3) Bringing in alternative interpretations of quantum mechanics certainly complicates the issue here, but I think the problem of probability remains pressing for any interpretation which ascribes reality to more than one outcome of a measurement, since it's then no longer possible to make the straightforward pragmatic assumption that the (single) course of events that actually happens is one rendered highly probable by the theory.

4) I agree - I think there's a prevailing idea that Einstein disliked nonlocality mainly because it disagreed with his own theory of relativity, and that's doing him an injustice, because he clearly had good independent philosophical reasons for opposing it. I think he's right to worry that if we were to get rid of locality altogether we'd simply end up with chaos; but what quantum mechanics demonstrates is that we can sometimes weaken underlying assumptions like locality without completely undermining the practice of physics.

Bookmark and Share
report post as inappropriate


John Merryman wrote on Sep. 8, 2012 @ 03:33 GMT
Emily,

One way to resolve the Everett hypothesis is to eliminate the external timeline of events and allow the process to proceed atemporally. Sound impossible? How can you have process without time? It emerges from the process, but it's dynamic, not dimensional. It's not the past proceeding into the future, but the future becoming the past. Not the earth traveling a narrative dimension from yesterday to tomorrow, but tomorrow becoming yesterday because the earth rotates. As an effect of action, time then becomes the collapse of probabilities into actualities. Duration is not external to the present, but is the state of the present between measured events. It is only when we consider time in retrospect that it emerges as narrative. Yet that past is receding, rather then the present moving.

As an effect of action, time is similar to temperature. Time as rate of change, while temperature as level of activity. When we change the level of activity, such as in gravity fields, or at significant speed, this affects the rate of change. Which is why clock rates vary. Not because they travel alternate time vectors.

This way, the past is determined, but the future is probabilistic, since the lightcone of input is not complete until the event happens.

Bookmark and Share
report post as inappropriate


Ted Erikson wrote on Sep. 8, 2012 @ 17:25 GMT
EA:

Very interesting and informative essay as philosophy.. As a newcomer to the FQXi community, I feel few of the "community" grade, or even look at, my essay which approaches the problem very realistically, based on an internal philosophical view.. Might you look at it, comment if so inclined, and grade it?

To Seek Unknown Shores

   http://fqxi.org/community/forum/topic/1409

Thank you

TE

Bookmark and Share
report post as inappropriate


Peter Jackson wrote on Sep. 13, 2012 @ 17:56 GMT
Emily

Have you considered entropy with respect to a cyclic universe model? Perhaps consider a larger model of an AGN accreting and re-ionizing all the matter in the disk as quasar jets (or any other you may prefer). To me this would demand a re-evaluation of the assumption or concept of entropy. Do you?

I also wonder, considering the evidence, if it really is the case that;

"we have in fact been able to construct a coherent and successful quantum theory which violates locality, and its laws certainly seem susceptible to empirical test." Do the 'empirical tests' really tell us that or is it just our interpretation, as I suspect?

A well written essay no less, and an easier read than some. That possibly includes mine, which I do hope you'll read anyway. It does add some theatre to a very intense mechanistic analysis which addresses some of the questions you raise and offers some logical mechanistic solutions. I'd value your thoughts.

Many thanks, and well done.

Peter

Bookmark and Share
report post as inappropriate

Author Emily Christine Adlam replied on Sep. 16, 2012 @ 09:47 GMT
Addressing the problem of entropy in a cyclic universe is interesting. I don't think the concept of entropy should be taken too seriously - if we regard the Second Law merely as a statistical generalistion, as modern statistical mechanics seems to indicate, then we should presumably regard the concept of entropy as a useful way of talking about the statistical facts rather than anything particularly fundamental, so in a cyclic universe we might well find that other ways of talking about the facts are more productive.

Indeed, the possibility of cyclic time seems to be another reason we might want to ask questions about the nature of our evidence - in particular, our beliefs about the distinction between past and future, beliefs which play an important role in determining our attitude to scientific evidence.

I agree that quantum theory in its simplest formulation doesn't necessarily violate locality - the mathematics alone can't imply something like that, so we need to add in some 'interpretation.' My point was merely that it's possible to construct a coherent theory (i.e. quantum theory together with one of the interpretations which do imply that locality is violated) where locality does not always hold, and therefore the practice of science is still possible even in the absence of strict locality assumptions.

Bookmark and Share


Peter Jackson replied on Sep. 16, 2012 @ 17:15 GMT
Emily,

Thanks. I agree, but suggest that if a consistent interpretation exists that DOES allow local reality and derive the effects of classical physics, then it would be a unifying theory. The test may be it's effectiveness in resolving anomalies.

I suggest that because I seem to have chanced across such an ontological construction, built from many epistemological elements, to bridge the divide. I hope you may do a careful read of my essay assembling those parts with dynamic logic foundation, and let me know where it is I went wrong.

Many thanks.

Peter

Bookmark and Share
report post as inappropriate


Jonathan Kerr wrote on Sep. 30, 2012 @ 10:02 GMT
Hello Emily,

It seems very strange to argue for the possible unreliability of evidence/memory, by pointing out problems in fields where our knowledge is very limited. Problems will always arise in fields like that anyway. Cosmology is sometimes portayed as a field within which we have a good understanding, but it isn't. We found out in the '90s how little we know.

You can't point out that some things about entropy don't make sense, and then say that this means our memories may be deceiving us somehow. Penrose pointed out some absolutely major problems with entropy in cosmology 30 years ago, and basically said that no-one except him seemed to see these problems. But our idea of entropy may be flawed, or the concept may be limited, or our undertanding of it may be incomplete. There are all kinds of unknowns surrounding these questions - our cosmology may be partly wrong, it's certainly incomplete. That's science, there are things that don't add up, you have to try to solve them. You may be right to re-examine the relationship we have with evidence and memory, but you can't present problems like those with entropy as reason to think this or that in your argument.

Best wishes, Jonathan

Bookmark and Share
report post as inappropriate


Jonathan Kerr wrote on Sep. 30, 2012 @ 22:31 GMT
Just to put that in a wider context, and explain why to me it seems premature to question the reality of the information we have because of the entropy problem - many areas of physics has had problems that at first seem impossible to deal with. Some people seem to run away from the unsolved puzzles, or try to diminuish their importance.

I'm not saying you do that, but I do think we should take these puzzles on, and be prepared to say 'this is baffling, we don't know what's going on'. In the past, those who have been prepared to look right into the cracks in our picture - like Einstein - have found the best clues waiting there, while others spend their time papering over them. I don't think you do that, but it seems to me there's nothing wrong if we're baffled, puzzles like interpreting QM have an interesting way of ruling out a large range of solutions, leaving us little or nothing that seems to work. That means it's a good puzzle, and that's why we struggle with them! But when a solution appears, it often seems less weird than it looked beforehand. Anyway, that's how I see it.

But also, when you look at the entropy problem, don't forget the possibility that motion through time exists, as George and I both think. (See my essay for evidence and reasoning that suggests it does.) If it did exist somehow, there would surely be some missing pieces of the puzzle still to be found, and that area looks connected with the bit of the puzzle you're looking at. So as I said, there are many unknowns in that area.

I'd like to see more about the mechanism that you think might be making our data contain unsolvable puzzles, if it's there I want to know about it.

Anyway, good luck,

Best wishes, Jonathan

Bookmark and Share
report post as inappropriate

Emily replied on Oct. 1, 2012 @ 01:00 GMT
I certainly agree with you that our knowledge is limited in these fields, and indeed, I'd suggest that the problems I point out are one symptom of that fact. My intention is not to use the difficulty with entropy to argue that it must be the case that our memories are deceiving us: rather, the argument is comparable to a reductio ad absurdum, to the effect that our usual scientific practice, applied to the evidence we have, leads us to a theory which apparently tells us we shouldn't rely on that evidence in the first place. As you rightly say, 'there are things which don't add up, you have to try and solve them,' and my suggestion is merely that given this problematic relationship with evidence, perhaps one direction of investigation is to look more carefully about the assumptions we are making about evidence in the construction of our theories. I certainly don't want to suggest this is a problem which is impossible to solve - using your metaphor, I think these difficulties with evidence are among the 'cracks in our picture,' into which we ought to look, as Einstein did, in order to find fruitful directions for future progress. Indeed, I'd say that what Einstein did was very similar to what I'm advocating: by relaxing certain assumptions once thought necessary to the practice of science (in his case, about the nature of space and time), it becomes possible to see issues in a new light and open up new avenues for scientific theorising.

Bookmark and Share
report post as inappropriate


Jonathan Kerr wrote on Oct. 1, 2012 @ 11:44 GMT
Hello Emily,

Thank you for your reply. I agree that if we have to question evidence or assumptions, it's often better to questions assumptions.

I just reread your essay - to me you show the limitations of certain theories very well, by showing what happens when they're applied outside their domains of validity. One reductio ad absurdam you set out is that according to statistical...

view entire post


Bookmark and Share
report post as inappropriate


Jonathan Kerr wrote on Oct. 1, 2012 @ 16:38 GMT
Sorry Emily, just to correct a mistake in the first line above, you were talking about questioning assumptions about evidence, not questioning assumptions.

The crucial point I forgot to make about QM is that the "problematic relationship with evidence" which you claim exists arises largely from a theory that has no clear interpretation, and has simply not been understood. We've also had trouble applying statistical mechanics, and yet you assume we can rely on our understanding of these two theories when you form that initial premiss. JK

Bookmark and Share
report post as inappropriate


Sergey G Fedosin wrote on Oct. 4, 2012 @ 05:46 GMT
If you do not understand why your rating dropped down. As I found ratings in the contest are calculated in the next way. Suppose your rating is
and
was the quantity of people which gave you ratings. Then you have
of points. After it anyone give you
of points so you have
of points and
is the common quantity of the people which gave you ratings. At the same time you will have
of points. From here, if you want to be R2 > R1 there must be:
or
or
In other words if you want to increase rating of anyone you must give him more points
then the participant`s rating
was at the moment you rated him. From here it is seen that in the contest are special rules for ratings. And from here there are misunderstanding of some participants what is happened with their ratings. Moreover since community ratings are hided some participants do not sure how increase ratings of others and gives them maximum 10 points. But in the case the scale from 1 to 10 of points do not work, and some essays are overestimated and some essays are drop down. In my opinion it is a bad problem with this Contest rating process. I hope the FQXI community will change the rating process.

Sergey Fedosin

Bookmark and Share
report post as inappropriate


Richard William Kingsley-Nixey wrote on Oct. 5, 2012 @ 18:05 GMT
Emily

I don't agree with all your propositions, but scoring is not about that. I do however strongly recommend you read Peter Jackson's essay very carefully, his mechanism knits neatly with my figures.

Well done, You deserve to be in the top 35.

Rich

Bookmark and Share
report post as inappropriate


Login or create account to post reply or comment.

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.