RECENT ARTICLES

Resolving the black hole firewall paradox—by calculating what a real astronaut would compute at the black hole's edge.

Defining a ‘quantum clock’ and a 'quantum ruler' could help those attempting to unify physics—and solve the mystery of vanishing time.

Calculating the odds that intelligent observers arise in parallel universes—and working out what they might see.

A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

FQXI ARTICLE

January 18, 2018

Riding the Rogue Quantum Waves

Could the formation of giant sea swells help explain how the macroscopic world emerges from the quantum microworld?

November 6, 2016

Thomas Durt

École Centrale de Marseille

Now, a trio of physicists is taking inspiration from such rogue waves—and the model commonly used to describe how they grow to such immense heights—to see if they can help solve one of the biggest mysteries in physics. Supported by a research grant of over $50,000 from FQXi, Thomas Durt of the École Centrale de Marseille, in France, Ralph Willox at the University of Tokyo, in Japan, and Samuel Colin of the Brazilian Center for Physics Research, in Rio de Janeiro, are investigating an alternative to quantum theory which can explain how the definite everyday world we see around us emerges from the uncertain microscopic realm, where objects can be in multiple places at the same time.

In the decade before the

According to standard quantum theory, the observer carrying out the experiment in some way causes the collapse of the quantum wave-function, forcing the quantum object to take on definite properties. But nobody can explain how or why that should happen. So Durt, Willox and Colin have turned to rogue ocean waves—which scientists today actually describe using a more complicated version of the Schrödinger equation—for an answer.

Soaking Energy

Although rogue waves have many causes, scientists believe they sometimes develop spontaneously from natural processes that occur amid a random background of smaller waves. Researchers hypothesize that an unusual wave type can form that somehow ’sucks’ energy from surrounding waves to grow to enormous heights. The version of the Schrödinger equation that is used to describe rogue wave formation is described as a "non-linear" equation because—unlike the linear Schrödinger equation that is commonly used in quantum theory—it allows for the possibility that the waves in the system interact with themselves, amplifying effects. One of the simplest models says that through such non-linear processes, a normal ocean wave ’soaks’ energy from the adjacent waves, reducing them to mere ripples as it rises in turn.

Sea Monster

Understanding rogue waves could help unravel a quantum mystery.

Credit: MIT News

Some years back, the mainstream view would have been that this approach is stretching an analogy too far, because subatomic systems and ocean waves are simply too different in character to be treated with the same math. But that’s changing: "Three or four years ago, I would have told you ’no, you will not find rogue wave-like phenomena in quantum mechanics’," notes Majid Taki, a physicist at the Lille University of Science and Technology, in France, who is an expert on non-linear waves in macroscopic environments.

"That’s because at the time we believed that rogue waves come only from highly non-linear conditions," Taki continues. Now, however, new research on rogue waves shows that they can be built in nearly linear systems that have only a small degree of non-linearity, a situation that is much closer to the quantum case. "I think now is the moment to try to find such effects in near-linear systems," says Taki, who is so convinced by the similarities that he advised Durt to pursue this approach.

It means pushing existing

technology to extremes,

which is a good thing.

technology to extremes,

which is a good thing.

- Catalina Curceanu

"This is an ambitious proposal," says FQXi member Catalina Curceanu, a quantum physicist and expert on collapse models at the National Institute of Nuclear Physics in Frascati, Italy. "Such experiments are very difficult because of the extreme precision that’s required." Curceanu says. "It means pushing existing technology to extremes, which is a good thing."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

SHERAPOVA SMITH wrote on December 10, 2017

In fact, an experienced company will already know of the potential issues that can occur. http://55printing.com/cheap-color-copies

In fact, an experienced company will already know of the potential issues that can occur. http://55printing.com/cheap-color-copies

TRACY ROMAN wrote on November 17, 2017

Thanks

[url=https://sovinco.com/]best essay writing service[/url]

Thanks

[url=https://sovinco.com/]best essay writing service[/url]

TRACY ROMAN wrote on November 17, 2017

Thank you so much for the post

Thank you so much for the post

read all article comments