RECENT ARTICLES

Why do we remember the past and not the future? Untangling the connections between cause and effect, choice, and entropy.

Philosophers, physicists and neuroscientists discuss how our sense of time’s flow might arise through our interactions with external stimuli—despite suggestions from Einstein's relativity that our perception of the passage of time is an illusion.

A devilish new framework of thermodynamics that focuses on how we observe information could help illuminate our understanding of probability and rewrite quantum theory.

An unusual approach to unifying the laws of physics could solve Hawking's black-hole information paradox—and its predicted gravitational "memory effect" could be picked up by LIGO.

Objective reality, and the laws of physics themselves, emerge from our observations, according to a new framework that turns what we think of as fundamental on its head.

FQXI ARTICLE

August 25, 2019

The Quantum Dictionary

Mark Van Raamsdonk is re-writing how we define the shape of our universe. Can such translations help to unite quantum theory and gravity?

FQXi Awardees: Mark Van Raamsdonk

March 10, 2014

Mark Van Raamsdonk playing the universe’s tune

University of British Columbia

Van Raamsdonk spends his time as a professor at the University of British Columbia (UBC), Vancouver, thinking deeply about such things, and has made a significant advance: the metaphorical chip holding all the programming for our universe, he concluded in 2010, stores information like a quantum computer.

Now theoretical physicists, including 40-year-old Van Raamsdonk, are trying hard to figure out the programming language being used by that chip. "We’re trying to construct a dictionary," says Van Raamsdonk, that allows physicists to translate descriptions of our complex universe into simpler terms. If they succeed, they will have found the biggest jigsaw piece in the puzzle of a Grand Unified Theory—something that can describe all of the forces of our universe, at all scales from the atomic to the galactic. That puzzle piece is, specifically, something that can describe gravity within the framework of quantum mechanics, which governs physics on small scales. Such a unified theory is needed to explain the extreme scenarios of a black hole or the first moments of the universe.

Van Raamsdonk started out with a strong interest in maths—in high school he was a member of the Canadian team for the maths Olympiad—and that’s what he intended to pursue in university. But in his first year he realized he was more attracted to the complexities of theoretical physics. "I thought physics was only about things you could observe directly: electrical circuits and the motion of objects, and that for every little situation there would be an equation to describe it," he says. "As I learned more I realized how much could be derived from deeper principles. You learn about things like quantum mechanics. It’s amazing that anyone even figured it out. There’s a really beautiful mathematical theory underlying nature."

As a grad student at Princeton in the second half of the 1990s, Van Raamsdonk found himself wrapped up in the so-called Second Superstring Revolution. The first revolution, which took place around 1985, had simply proposed that string theory—which posits that elementary particles can be described by the vibrations of tiny strings—could be interpreted as a quantum theory that has gravity in it. At that point, physicists were deeply concerned that the beautiful mathematics of quantum mechanics, while able to describe the strong, weak and electromagnetic forces, failed horribly at trying to describe the final fundamental force of gravity. Trying to unify quantum mechanics and gravity had become the holy grail of theoretical physics. String theory offered a possible way to unite them. "People thought hey, maybe this would be the answer. But they understood relatively little about it," says Van Raamsdonk.

Holographic Universe

Then in 1998, a Princeton graduate published a paper that would become one of the most famous in theoretical physics: Juan Maldacena proposed that to understand quantum gravity through string theory, you can look instead to the much more ordinary, well-described system of quantum mechanics called quantum field theory (

Although, so far, nobody has given a direct proof of Maldecena’s conjecture, its mathematical consistency has been confirmed time and again. As a computational tool, it is even being used to help condensed matter physicists predict the properties of exotic materials in the lab (see "The Black Hole and the Babel Fish"). "No one has actually proven it, but we’re as certain about it as about anything in physics," says Van Raamsdonk.

Decoding Reality

Is our 3-D world a projection from a quantum chip?

His biggest insight to date was described in a 2010 essay, which won an award that year from the Gravity Research Foundation and accolades from colleagues: "Everyone knows about this essay," says black hole theoretician and FQXi member Ted Jacobson from the University of Maryland in College Park. The paper addresses one of the most basic features of our universe—its shape. Van Raamsdonk started by imagining that the metaphorical computer determining the features of our universe is a quantum computer: instead of having ordinary information-carrying ’bits’ that must exist in either an ’1’ or ’0’ state (like current that must be either on or off), this sort of computer has quantum bits (or qubits) that can exist as a 1, 0, or something in between, all at the same time. In order for a quantum computer to perform any useful calculations, these fuzzy qubits have to be connected to each other through a phenomenon called entanglement, where the state of one qubit helps to determine the state of a neighbour.

Van Raamsdonk considered what would happen if one split the 2D quantum computer memory card in two, so that one half could not entangle with the other. In such a case, he showed mathematically, the geometry of the resulting 3D world would also be split in two—like a balloon being pinched into two separate balloons, or into two parallel universes that can’t communicate with each other. Keep splitting the memory card and you keep fragmenting the universe. If the chip has no entanglement at all, with every qubit operating independently, then the universe is just a mass of independent atoms with no connection to each other. That’s not the universe we live in. So the ’instructions’ at the core of our universe, Van Raamsdonk concluded, must involve entanglement. "To have classical spacetime you have to entangle all the parts of your memory chip," he says.

To have classical spacetime you

have to entangle all the

parts of your memory chip.

have to entangle all the

parts of your memory chip.

- Mark Van Raamsdonk

With his $60,000 FQXi grant, Van Raamsdonk is pushing his work further, by identifying characteristic features of gravitational physics (like black holes, or the everyday gravitational attraction between two ordinary objects) and asking how to rewrite these phenomena in terms of quantum field theory; or, to look at things the other way, by investigating which properties of quantum theory, like entanglement, are required to give rise to the features we see around us in our universe.

"This whole set of questions about the dictionary is really a question about how the information about our universe is stored," Van Raamsdonk says. While the long-term goal is to formulate a working theory of quantum gravity, this work might also reveal interesting things about quantum information theory itself. "I’m very glad he has grabbed onto this thread and is pursuing it," says Jacobson.

Whether re-writing the laws of gravity so they work on a quantum scale will have any impact beyond the sphere of theoretical physics is uncertain. There are no clear applications in sight, though presumably one might need such a theory to, say, construct a wormhole to get your spaceship from one part of space to another. No one, laughs Horowitz, is building a wormhole in their lab quite yet. Indeed the whole idea of quantum gravity remains in the theoretical realm. "Mark’s ideas so far have not led to any testable predictions," says Horowitz. "But that’s not surprising when you’re dealing with something so remote from everyday experience."

But there is one way that Van Raamsdonk makes practical contact with a holographic dictionary —of sorts—in his daily life. In his spare time, he plays alto saxophone: music being, funnily enough, another area where 2D instructions are brought to life in a multi-dimensional world. "I haven’t thought about it like that," laughs Van Raamsdonk. But then, "part of the appeal of music is that you don’t have to think."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
var recaptcha = $("#g-recaptcha-response").val();
if (recaptcha === "") {
event.preventDefault();
alert("The reCaptcha Box below must be checked before you submit the form");
}
else if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

GENE H BARBEE wrote on November 20, 2014

Hi Mark,

Your interest in how information is stored is also an interest of mine. I wrote a FQXi essay in 2012 on the subject in which I used information theory (Claude Shannon) tools to show that the proton and neutron are manifestations of underlying information laws. I believe this agrees with your work and suggests an information based reality deeper than physical reality. I wonder if you would be so kind to comment on my paper.

Hi Mark,

Your interest in how information is stored is also an interest of mine. I wrote a FQXi essay in 2012 on the subject in which I used information theory (Claude Shannon) tools to show that the proton and neutron are manifestations of underlying information laws. I believe this agrees with your work and suggests an information based reality deeper than physical reality. I wonder if you would be so kind to comment on my paper.

SHAD WILLIAMS wrote on September 1, 2014

I thought string theory incorporated gravity by identifying the graviton as a massless messenger particle that is a closed loop string, one of many features that allows it to separate from the brane?

I thought string theory incorporated gravity by identifying the graviton as a massless messenger particle that is a closed loop string, one of many features that allows it to separate from the brane?

AMRIT wrote on August 30, 2014

NASA confirms universe is "flat",

it has a shape of Euclidean space,

it is infinite......

So "big bang" model is not convinient in this picture.

We propose universe in a parmanent dynamic equuilbrum, no begniing , no end.

see file attached.

NASA confirms universe is "flat",

it has a shape of Euclidean space,

it is infinite......

So "big bang" model is not convinient in this picture.

We propose universe in a parmanent dynamic equuilbrum, no begniing , no end.

see file attached.

read all article comments