RECENT ARTICLES

Resolving the black hole firewall paradox—by calculating what a real astronaut would compute at the black hole's edge.

Defining a ‘quantum clock’ and a 'quantum ruler' could help those attempting to unify physics—and solve the mystery of vanishing time.

Calculating the odds that intelligent observers arise in parallel universes—and working out what they might see.

A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

FQXI ARTICLE

January 19, 2018

The Patchwork Multiverse

Cutting spacetime into patches could help explain the size of the universe—and provide the first ”experimental” evidence that string theory is on the right track.

FQXi Awardees: Raphael Bousso

February 9, 2012

RAPHAEL BOUSSO

UC Berkeley

Which is just as well, for Bousso is trying to solve one of the biggest puzzles in the cosmos: Just why is the universe so large? Bousso’s quest has led him to consider a multitude of universes and, in particular, how the value of the cosmological constant—the intrinsic energy of the vacuum of spacetime—could vary across different universe patches. The answer, Bousso claims, is "the first example of an experimental success of string theory."

It makes sense to look for a connection between the cosmological constant and the size of the universe. Many physicists believe that vacuum energy is the mysterious "dark energy" that is causing the expansion of the universe to accelerate. To fit with the cosmos that we see around us, the value of the constant should be small. The trouble is that this is in violent disagreement with calculations of vacuum energy from quantum field theory, by some 120 orders of magnitude.

In 1997, Steven Weinberg, of the University of Texas, Austin, came up with the first realistic prediction for the value of the cosmological constant. Weinberg noted that there comes a time in the evolution of the universe when the cosmological constant—which repulses gravity and causes spacetime to expand faster and faster—becomes dominant. He realized that if the constant was much larger than 10

Underpinning the Universe

This allowed Weinberg to ask the question: What’s the most likely value of the cosmological constant that would be seen by observers in our universe? The answer: 10

As Weinberg himself noted, his arguments made sense only if there were many, many patches of spacetime, each with its own randomly-determined value of the cosmological constant. But in 1997, there wasn’t a theory that could generate different patches of spacetime, each with a different vacuum.

This is the first example

of an experimental

success of string theory.

of an experimental

success of string theory.

- Raphael Bousso

The physical realization of this ensemble is referred to as the multiverse. With this theoretical underpinning in place, Bousso and Polchinski asked the same question that Weinberg did: What would be the most likely value of the cosmological constant that would be seen by an observer? They were able to show that the landscape would have regions with a cosmological constant that tallied well with observations.

But soon it became clear that the analysis suffered from a profound problem: How do you calculate the number of observers in a seemingly infinite universe?

Bousso’s answer was to limit himself to thinking only about an imaginary observer who lives forever. Because of the finite speed of light, this observer can only see events within a certain region of their universe—their

"If the cosmological constant starts becoming important before the observers form, then there just won’t be very many observers opening their eyes in the region where you are allowed to count them," says Bousso.

Time of Life

Using the causal patch technique, Bousso found that the cosmological constant is related to the time at which observers inhabit any given universe. Plugging the age of our universe into his equations gave Bousso a universe that would be about 10

Is Evidence of Dark Energy Also Evidence of the Multiverse?

The distribution of galaxies in a universe without dark

energy (left) would differ from one in which

dark energy is significant (right).

Credit: Lawrence Berkeley National Laboratory

So, the origin of these numbers—why the cosmological constant is not smaller and why the universe is not bigger—has to do with the finiteness of the string landscape, explains Bousso.

"It actually explains the cosmological constant in a way that previous theoretical attempts have utterly failed," he says.

At the 2011 FQXi conference, Bousso discussed the relationship between time and the multiverse:

The challenge going forward is to get a better handle on the string landscape. For instance, in their latest paper, which was work done using an FQXi grant of over $60,000, Bousso and colleagues predict that the string landscape will have about 10

This explains the cosmological

constant in a way that

previous attempts have

utterly failed.

constant in a way that

previous attempts have

utterly failed.

- Raphael Bousso

Bousso has been successful in taking nebulous questions and coming up with something concrete, says Polchinski. "His conclusion is something that can eventually be refined into a sharp mathematical prediction."

Sharp predictions are exactly what string theory needs, to counter criticisms that the theory is too far removed from reality. But Bousso has long been convinced that he is on the right track. "I think the evidence is mounting that there really is a multiverse and that there all these vacua there," he says. "I don’t think we can claim victory yet, but there is really no other game in town."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Recent Comments

ANONYMOUS wrote on November 8, 2013

Baggott[Farewell to Reality: How Fairy-Tale Physics Has Betrayed The Search For Scientific Truth] and even more spot-on Unzicker-Jones[Bankrupting Physics: How Top Scientists Are Gambling Away Their Credibility] critiques shame physics’ shameless rock-star media-hype P.R. spin-doctoring veracity-abandoning touting sci-fi “show-biz” trending viral exacerbated by online social networks veritable diarrhea via proliferation of uncritical “pop-sci” science-writers where all is spectacle...

Baggott[Farewell to Reality: How Fairy-Tale Physics Has Betrayed The Search For Scientific Truth] and even more spot-on Unzicker-Jones[Bankrupting Physics: How Top Scientists Are Gambling Away Their Credibility] critiques shame physics’ shameless rock-star media-hype P.R. spin-doctoring veracity-abandoning touting sci-fi “show-biz” trending viral exacerbated by online social networks veritable diarrhea via proliferation of uncritical “pop-sci” science-writers where all is spectacle...

OSVALDO DOMANN wrote on December 23, 2012

The methodology of today's theoretical physics consists in introducing first all known forces by separate definitions independent of their origin, arriving to quantum mechanics after postulating the particle's wave, and is then followed by attempts to infer interaction laws for particles and fields postulating the invariance of the wave equation under conveniently constructed gauge transformations. To get the postulated invariance, the wave equations are finally adapted through the addition of...

The methodology of today's theoretical physics consists in introducing first all known forces by separate definitions independent of their origin, arriving to quantum mechanics after postulating the particle's wave, and is then followed by attempts to infer interaction laws for particles and fields postulating the invariance of the wave equation under conveniently constructed gauge transformations. To get the postulated invariance, the wave equations are finally adapted through the addition of...

MICHAEL HADDID wrote on November 12, 2012

Very recently there have been unexpected advances in understanding dark energy. In fact if the claim of the Egyptian Scientist M. S. El Naschie is correct, then there is no more a mystery regarding dark energy. El Naschie’s solution is disarmingly simple and was presented at two conferences which were almost entirely devoted to his work. The first was held in Bibliotheca Alexandrina early October 2012 and the second was in Shanghai a week or so ago. On both occasions El Naschie presented a...

Very recently there have been unexpected advances in understanding dark energy. In fact if the claim of the Egyptian Scientist M. S. El Naschie is correct, then there is no more a mystery regarding dark energy. El Naschie’s solution is disarmingly simple and was presented at two conferences which were almost entirely devoted to his work. The first was held in Bibliotheca Alexandrina early October 2012 and the second was in Shanghai a week or so ago. On both occasions El Naschie presented a...

read all article comments