Search FQXi


David Vognar: "Completeness theorem: If a system’s components can transduce, that system..." in The Entropic Price of...

Georgina Woodward: "On obtaining the singular, relative, measurement product it replaces the..." in The Present State of...

Steve Dufourny: "The paper of Wilczek of course is very relevant considering the idea about..." in The Noise of Gravitons

Georgina Woodward: "Material neuronal structure in which memory is encoded, physical records..." in Quantum Physics and the...

Steve Dufourny: "It is really how we consider the structure of the spacetime, and also how..." in The Noise of Gravitons

Aleksandr Maltsev: "Hi Georgina, Write a letter to" in Quantum Physics and the...

Georgina Woodward: "In quantum experiments using particles, there won't be swapping with a..." in The Present State of...

Aleksandr Maltsev: "I shortened the phrase Zeeya Merali  «Why does time flow….?    How..." in Time's Arrow, Black Holes...

click titles to read articles

The Entropic Price of Building the Perfect Clock: Q&A with Natalia Ares
Experiments investigating the thermodynamics of clocks can teach us about the origin of time's arrow.

Schrödinger’s A.I. Could Test the Foundations of Reality
Physicists lay out blueprints for running a 'Wigner's Friend' experiment using an artificial intelligence, built on a quantum computer, as an 'observer.'

Expanding the Mind (Literally): Q&A with Karim Jerbi and Jordan O'Byrne
Using a brain-computer interface to create a consciousness 'add-on' to help test Integrated Information Theory.

Quanthoven's Fifth
A quantum computer composes chart-topping music, programmed by physicists striving to understand consciousness.

The Math of Consciousness: Q&A with Kobi Kremnitzer
A meditating mathematician is developing a theory of conscious experience to help understand the boundary between the quantum and classical world.

February 7, 2023

The Quantum PlayStation
How the PS3 is helping physicists develop a theory of quantum gravity
by Grace Stemp-Morlock
FQXi Awardees: Gaurav Khanna
July 18, 2010
Bookmark and Share

University of Massachusetts at Dartmouth
Like many physicists, Gaurav Khanna is a PlayStation fan. Unlike other physicists, however, he is using the games console in his efforts to answer one of the biggest questions in cosmology: What came before the big bang?

When students learn the standard story about the birth of our universe, they are usually told not to ask what came before it. Time, the textbooks say, was created along with space during the big bang. But some physicists think that things aren’t quite that straightforward. By throwing out some of the basic tenets of classical physics, they have come up with a picture in which our universe was preceded by another, which crunched down and then bounced outwards again. And according to Khanna, the SONY PlayStation may be the ideal—if seemingly unlikely—tool for peering back into this time before time.

Khanna, at the University of Massachusetts, Dartmouth, is using a network of PS3 consoles and a $15,000 grant from the Foundational Questions Institute to model this bouncing universe. He has been inspired by attempts to unite two of the most successful theories in physics: quantum mechanics, which rules the subatomic world, and general relativity, which describes situations where gravity reigns. So far, physicists have been frustrated in their attempts to find a theory that meshes the two together. Such a theory is needed if we want to understand what happens when immense gravitational forces are concentrated into microscopic volumes of spacetime, such as in black holes or at the birth of our universe.

One candidate for finding the answer is loop quantum cosmology. This theory rejects the assumption of general relativity that spacetime is made up of a continuous fabric; instead it says that spacetime is built up of discrete blocks, rather like a digital image. You may see a smooth picture, but when you zoom in you reveal individual pixels. Luckily, a pixelated universe is easy to simulate. “Computers can handle discrete objects and manipulate them very effectively and very fast,” says Khanna. “After all that’s their forte.”

In this model, our universe did not begin in an infinitely small big bang singularity, because it is impossible to squash spacetime down below some small, but finite value. Instead, the universe bounced out from a tiny volume, which in turn, was the remnant of a prior crunched-down cosmos.

But why use the PS3 to model the origins of this universe? One advantage of the PS3 is that at the time that Khanna began the project it was an open platform, which could run Linux, making scientific programming relatively easy. By hooking together a number of consoles—each with the power to accommodate fast-paced action games—Khanna has created a supercomputer equivalent to nearly 200 normal desktop computers. Not only is the PS3 supercomputer 10 times more cost effective, but it is also 10 times more power efficient, using far less electricity. In fact, SONY were so impressed by Khanna’s enterprising idea that some of their R&D division even helped Khanna get the project up and running.

Gaming Supercomputer

Khanna’s gaming supercomputer has already proved a success at simulating the behavior of black holes. For instance, his team has been able to predict the distinct signatures that should show up when black holes swallow stars. Just like a ringing bell, these black holes should set off vibrations in spacetime—known as “gravitational waves”—as they chow down. Khanna’s simulations have characterized the frequency, duration, and other properties of these waves and this information will help observational efforts, such as those to be made by the Laser Interferometer Gravitational-Wave Observatory (LIGO), to find direct evidence of black holes.

The PS3 network is the equivalent of 200 normal
desktop computers.
But while Khanna’s earlier simulations followed the evolution of black holes by using Einstein’s general relativity as a framework, his latest work testing the predictions of loop quantum cosmology does not have this conventional underpinning. This raises a whole new set of challenges, says Dan Christensen, at the University of Western Ontario, an expert on physics simulations and colleague of Khanna’s. For instance, it is very tough to pinpoint what patch of spacetime you are looking at, because the nature and evolution of spacetime is itself being tested as part of the simulation, he explains.

Size also matters in these simulations. According to loop quantum cosmology, the pixels of spacetime are unthinkably tiny when compared with observable objects. “You might want to model a planet but your building blocks are 10-33cm!” says Christensen.

Despite these difficulties, preliminary simulations have already shown that some drastic changes were needed in the loop quantum cosmology because the modeled universe did not match the features we see in the real universe around us. “The first equations we tested didn’t work, especially for cosmology and black holes,” said Martin Bojowald, at Pennsylvania State University, one of the theoretical physicists behind the loop quantum cosmology. “Something was wrong and we saw that the system was unstable, which wasn’t obvious when we derived the equations from a mathematical perspective.”

Bojowald and his colleagues hope that their revised equations will fare better in Khanna’s next round of tests. If so, their refined theory could provide the blueprints for simulating conditions before our universe existed. But if not, loop quantum cosmologists will just have to keep trying to move farther up the PS3 leaderboard.

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!
  • Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

  • HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

  • You may use superscript (10100) and subscript (A2) using [sup]...[/sup] and [sub]...[/sub] tags.

  • You may use bold (important) and italics (emphasize) using [b]...[/b] and [i]...[/i] tags.

  • You may also include LateX equations into your post.

Insert LaTeX Equation [hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation
clear equation
insert equation into post at cursor

Your name: (optional)

Recent Comments

Holy Trinity equation.



1 odd+ 1 Even= 2 ODD.



Import random physics equations from the web using MATHS TYPE 6.6

Cut and paste QM and GR equations into a spreadhseet.


The print out thousands of combinations of equations using a dot matrix printer and plenty of paper.

Study the output of a years processing in a loop.

Looking for random rules to 10^500 different Hawking multiverses.............

Put this program...

WHat came before the big bang.

Steve Jeffreys Collary to the law of non contradiction.

Opposite particles X and Y cannot be in the same place at the same time in the same state exception prior to the big bang.............

Four states are one and this results in four forces being one one is dependant on the other...................

Try it on the playstation.

The mechanism for the big bang is potential energy converted to kenetic............


read all article comments

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.