RECENT ARTICLES

Resolving the black hole firewall paradox—by calculating what a real astronaut would compute at the black hole's edge.

Defining a ‘quantum clock’ and a 'quantum ruler' could help those attempting to unify physics—and solve the mystery of vanishing time.

Calculating the odds that intelligent observers arise in parallel universes—and working out what they might see.

A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

FQXI ARTICLE

January 19, 2018

The Non-Expanding Universe

Time doesn’t exist. The universe isn’t really expanding. And if you want a theory of quantum gravity, look to the man who inspired Einstein, says Julian Barbour.

FQXi Awardees: Julian Barbour

August 25, 2009

JULIAN BARBOUR

Today, Barbour is on that same mission to unite gravity with quantum mechanics. In order to succeed, he believes that we not only need to re-examine our understanding of time, but also question the conventional wisdom that the universe is expanding.

Happily for me, Barbour doesn’t take advantage of his skepticism about time to shrug off appointments. After picking up the phone precisely on time for this interview, he asked for seven minutes exactly to finish the remaining third of his cup of coffee, and was ready and waiting for my call, coffee cup drained, 560 seconds later.

Off the Clock

Barbour’s certainly not the first physicist to question our understanding of time; Einstein was a skeptic, too. If Barbour had told Einstein to give him a call back in seven minutes, Einstein might have asked: Your minutes or mine? If Barbour had been calling, say, from a spaceship moving at close to the speed of light, or one perched at the lip of a black hole, Einstein would find that each of Barbour’s minutes would last far longer than his. There is no universal reference clock that both Barbour and Einstein could agree on.

I’ve been taken much

more seriously saying

that time doesn’t

exist than that the

universe isn’t expanding.

more seriously saying

that time doesn’t

exist than that the

universe isn’t expanding.

- Julian Barbour

To get a handle on Mach’s viewpoint, imagine a particle spinning out in space. If there were no stars forming a backdrop against which to measure the particle’s motion, can we really say that the particle is moving? To Mach, the answer was no, in an empty space there is no distinction between the particle spinning and the particle being stationary.

"The Anatomy of God"

If this doesn’t seem revolutionary, try seeing it from Isaac Newton’s perspective. When Newton penned his laws of motion, Barbour explains, "He thought he’d seen ’the anatomy of God.’" And to Newton, God looked pretty much like three-dimensional graph paper. On top of this invisible coordinate grid, balls rolled, apples dropped, planets orbited.

The expansion of space is

a surprising vestige of

Newton’s absolute space.

a surprising vestige of

Newton’s absolute space.

- Julian Barbour

Newton’s "theory of change" was "phenomenally successful," says Barbour. But it had a weakness, "the invisible background grid and clock."

"My life’s work has been about finding an alternative theory of change," says Barbour, one that is purely "Machian"—that is, a theory that does away with the grid and clock. Such a theory, he believes, might open the door to quantum gravity.

Going Off Grid

Einstein took a big step in deconstructing Newton’s old grid. In his theory of General Relativity, Einstein reimagined the grid as pliable, allowing space itself to arch and flex under the influence of gravity. And because objects are in constant motion, Einstein saw the grid as dynamic, changing with time as gravity adjusted its grip. Einstein even coined the term "Mach’s Principle" to describe the ideas that inspired him.

IS THE UNIVERSE REALLY EXPANDING?

Credit: NASA

"When you look at General Relativity, it is beautifully Machian," says Barbour. "But the expansion of space that it allows presupposes an absolute ruler. That’s a surprising vestige of Newton’s absolute grid."

Barbour explains with a geometrical analogy. Suppose the whole universe just consisted of a triangle. You could measure the angles of the triangle with respect to each other and classify the triangle as equilateral, isosceles, or scalene (providing, that is, that you remembered your seventh-grade geometry). You could say, hey, the angles of a triangle add up to 180 degrees! But if you wanted to judge the size of the triangle, you’d need a second triangle to make a comparison.

Barbour’s conclusion: "Shape is much more fundamental than size. I conjecture an alternative cosmology in which the universe is merely changing its shape—becoming more structured—and not doing that as well as expanding."

Another way to put it: "We swim in nothing," says Barbour. Not in a rigid grid; not with an absolute clock and ruler. "But," he asks, "precisely how do we swim in nothing?"

Back to Mach

To answer that question, Barbour set out to reformulate physics, this time leaving out both the absolute size and the universal clock. With his hands thus mathematically tied, he began at the beginning, with Newton and the law of inertia ("objects at rest tend to stay at rest, objects in motion tend to stay in motion"—you remember).

Barbour likes to start with his intuition, and then dig in to the math with help from collaborators like Bruno Bertotti at the University of Pavia, Italy, and Niall Ó Murchadha at University College Cork, Ireland. "I’m very much an intuitive thinker," says Barbour. "I was never much good at mathematics—wasn’t in the class of the superstars." (Of course, you’ll want to take this with a grain of salt—he did receive his degree in mathematics from Cambridge with honors.)

Should I be right,

I would be assured

a place in history.

I would be assured

a place in history.

- Julian Barbour

But his search for an alternative explanation that does away with the expansion of the universe has been met with skepticism: "I have been taken much more seriously saying time doesn’t exist than that the universe isn’t expanding!"

ERNST MACH

Right all along?

Lee Smolin, a theoretical physicist at PI, says that Barbour has already carved out a comfortable place in the history of quantum gravity. Smolin calls Barbour a scientific "seer," adding that he has provided the rigorous mathematical structure upon which to build clock- and ruler-less theories.

Olaf Dreyer, a quantum gravity researcher at the Massachusetts Institute of Technology, in Cambridge, sits on the opposite side to Barbour on the debate over time, but he salutes his work: "

Barbour isn’t counting on a speedy payoff. "I don’t believe there will be a quick breakthrough," he says. "It will keep the young people busy all their lives." To pass some of his knowledge on to those young people, Barbour is also in the process of writing a book which, he says, "will present more or less everything that I think I have learned about two basic questions: What is time? What is motion? The answers to these two questions permeate the whole of modern physics in a way that few researchers realize." It will be "a new perspective that they won’t find in any textbook."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

INGSLOT VONNESLINE wrote on August 22, 2016

Barbour is one of the specials...what marks him out for me the most is the simple sequence of reason at the core of each view he holds, proportionate with the size of his investment.

Barbour is one of the specials...what marks him out for me the most is the simple sequence of reason at the core of each view he holds, proportionate with the size of his investment.

PENTCHO VALEV wrote on February 2, 2016

"Vacuum has friction after all. In quantum mechanics, the uncertainty principle says we can never be sure that an apparent vacuum is truly empty. Instead, space is fizzing with photons that are constantly popping into and out of existence before they can be measured directly. Even though they appear only fleetingly, these "virtual" photons exert the same electromagnetic forces on the objects they encounter as normal photons do. Now, Alejandro Manjavacas and F. Javier García de Abajo of the...

"Vacuum has friction after all. In quantum mechanics, the uncertainty principle says we can never be sure that an apparent vacuum is truly empty. Instead, space is fizzing with photons that are constantly popping into and out of existence before they can be measured directly. Even though they appear only fleetingly, these "virtual" photons exert the same electromagnetic forces on the objects they encounter as normal photons do. Now, Alejandro Manjavacas and F. Javier García de Abajo of the...

ECKARD BLUMSCHEIN wrote on January 29, 2016

Pentcho,

"a similar slowing could well be created in sound waves"?? Even if Padgett was correct, this didn't imply that phonons and photons behave according to emission theory. Padgett's effect is only claimed for slowing and only in the near field. You are persistently wrong.

I abstain from commenting on the putative evidence for BB and the idea of a finite universe.

++++

Pentcho,

"a similar slowing could well be created in sound waves"?? Even if Padgett was correct, this didn't imply that phonons and photons behave according to emission theory. Padgett's effect is only claimed for slowing and only in the near field. You are persistently wrong.

I abstain from commenting on the putative evidence for BB and the idea of a finite universe.

++++

read all article comments