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Finding Structure in Science and Mathematics 

Noson S. Yanofsky 

One can view the laws of nature as having goals and intentions to produce the complex 

structures that we see. But there is another, deeper, way of seeing our world. The 

universe is full of many chaotic phenomena devoid of any goals and intents. The 

structure that we see comes from the amazing ability that scientists have to act like a 

sieve and isolate those phenomena that have certain regularities. By examining such 

phenomena, scientists formulate laws of nature. There is an analogous situation in 

mathematics in which researchers choose a subset of structures that satisfy certain 

axioms. In this paper, we examine the way these two processes work in tandem and show 

how science and mathematics progress in this way. The paper ends with a speculative 

note on what might be the logical conclusion of these ideas.       

 

The laws of nature that we find  

Scientists look around the universe and see amazing structure. There are objects and processes of fantastic 

complexity. Every action in our universe follows exact laws of nature which are perfectly expressed in a 

mathematical language. These laws of nature are fine-tuned to bring about life, and in particular, 

intelligent life. It seems that the final goal of all these laws of nature is to create a creature that is in awe 

of the universe that created him. What exactly are these laws of nature and how do we find them?  

The universe is so structured and orderly that we compare it to the most complicated and exact 

contraptions of the age. In the 18
th
 and 19

th
 century, the universe was compared to a perfectly working 

clock or watch. Philosophers then discussed the Watchmaker. In the 20
th
 and 21

st
 century, the most 

complicated object is a computer. The universe is compared to a perfectly working supercomputer. 

Researchers ask who programed this computer. The analogy is taken even further with scientists 

wondering if we are like characters in The Matrix and actually a simulation.     

How does one explain all this structure? What are the goals of these laws? Why do the laws seem so 

perfect for producing life and why are they expressed in an exact mathematical language? 

One answer to these questions is Platonism (or its cousin Realism.) This is the belief that the laws of 

nature are objective and have always existed. They possess an exact ideal form that exists in Plato’s 

realm. These laws are in perfect condition and they have formed the universe that we see around us. Not 

only do the laws of nature exist in this realm but it lives alongside all perfectly formed mathematics. This 

is supposed to help explain why the laws are written in the language of mathematics. Platonism leaves a 

lot to be desired. The main problem is that Platonism is metaphysics, not science. However, even if we 
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were to accept it as true, many questions remain. How was this Platonic attic set up? Why does our 

physical universe follow these ethereal rules? How do scientists and mathematicians get access to Plato’s 

little treasure chest of exact ideals?  

The multiverse is another answer that has recently become quite fashionable. This is the belief that our 

universe is just one of many universes called the multiverse. Each universe has its own set of rules and its 

own possible structures that come along with those rules. Physicists who push the multiverse theory, 

believe that the laws in each universe is somewhat arbitrary. The reason why we see structure in our 

universe is that we happen to live in one of very few universes that have laws that can produce intelligent 

life. While the multiverse explains some of the structure that we see, there are questions that are left open. 

Rather than asking why the universe has any structure at all, we can push the question back and ask why 

the multiverse has any structure at all. Another problem is that while the multiverse would answer some 

of the questions we posed if it existed, who says it actually exists? Since we have no contact with possible 

other universes, the question of the existence of the multiverse is essentially metaphysics.   

There is another, more interesting, explanation for the structure that is the focus of this paper. Rather than 

saying that the universe is very structured, say that the universe is chaotic and lacks structure. The reason 

why we see so much structure is that scientists act like a sieve and pull out only those phenomena that are 

predictable. They do not take into account all phenomena; rather, they select those phenomena they can 

deal with. 

Some people say that science studies physical phenomena. This is simply not true. The shape of a cloud is 

a physical question that no scientist would try to describe. Who will win the next election is a physical 

question but no hard scientists would venture to give an absolute prediction. Whether or not a computer 

will halt for a given input can be seen as a physical question and yet we learned from Alan Turing that 

this question cannot be answered. Science does not study all physical phenomena. Rather, science studies 

predictable physical phenomena. It is almost a tautology: science predicts predictable phenomena.  

Scientists have described the criteria for which phenomena they select: it is called symmetry. Symmetry is 

the property that despite something changing, there is some part of it that still remains the same. When 

you say that a face has symmetry, you mean that if the left side is swapped with the right side, it will still 

look the same. When physicists use the word symmetry they are discussing collections of physical 

phenomena. A set of phenomena has symmetry if it is the same after some change. The most obvious 

example is symmetry of location. This means that if one performs an experiment in two different places, 

the results should be the same. Symmetry of time means that the outcomes of experiments should not 

depend on when the experiment took place. There are many other types of symmetry.  

If phenomena are to be selected by scientists, then they must have many different types of symmetry. 

When a physicist sees a lot of phenomena, she must first determine if these phenomena have symmetry. 

She performs experiments in different places and at different times. If she achieves the same results, she 

then studies them to find the underlying cause. In contrast, if it failed to be symmetric, it would be 
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ignored by the scientist.  

The power of symmetry was first truly exploited by Albert Einstein. He postulated that the laws of 

physics should be the same even if the experimenter is moving close to the speed of light. With this 

symmetry in mind, he was able to compose the laws of special relativity. Einstein was the first to 

understand that symmetry was the defining characteristic of physics. Whatever has symmetry will have a 

law of nature. The rest is not part of science.   

A little after Einstein showed the importance of symmetry for scientific endeavor, Emmy Noether proved 

an important theorem that established a connection between symmetry and conservation laws.  This is 

related to the constants of nature which are central to modern physics. Again, if there is symmetry, then 

there will be conservation laws and constants. The physicists must be a sieve and allow the phenomena 

that do not possess symmetry to slip through her fingers.  

No one is asserting that selecting subsets of phenomena is the only way of finding laws of nature. There 

are other methods for finding such laws. For example, in statistical mechanics and in quantum theory, one 

considers large ensembles of phenomena to be one phenomenon (a quotient set of phenomena, rather than 

a subset). While we acknowledge the existence of other methods, in this paper we will focus on our 

selection method.  

There are a few problems with this explanation of the structure found in the universe. For one, it seems 

that phenomena that we do select and that have laws of nature are exactly the phenomena that generate all 

the phenomena. So, while the shape of a cloud or the winner of an election are too complicated for the 

scientist to worry about, they are generated by laws of water molecules and brain synapses that are part of 

science. Where is the boundary between science and non-science?   

Another problem is that it is hard to escape the feeling that there seems to be structure in the universe 

even when we do not observe it. Suns are formed, planets swing around them, moons revolve around the 

planets, etc. The laws of nature seem to work even on the dark side of the moon. There is structure even 

when scientists do not act as a sieve.  

Despite these failings of our explanation for the structure, we believe it is the best candidate for being the 

solution. It is one of the only solutions that does not invoke any metaphysical principle or the existence of 

a multitude of unseen universes. We do not have to look outside the universe to find a cause for the 

structure that we find in the universe. Rather, we look at how we are looking at phenomena.  

Before we move on, we should point out that our solution has a property in common with the multiverse 

solution. We postulated that, for the most part, the universe is chaotic and there is not so much structure in 

it. We, however, focus only on the small amount of structure that there is. Similarly, one who believes in 

the multiverse believes that most of the multiverse lacks structure. It is only in a select few universes that 

we do we find any structure. And we inhabitants of this structured universe are focused on that rare 

structure. Both solutions are about focusing on the small amount of structure in a chaotic whole. 
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A hierarchy of number systems 

This idea that we only see structure because we are focusing on a subset of phenomena is novel and hard 

to wrap one’s head around. There is an analogous situation in mathematics that is much easier to 

understand. We will focus on one important example where one can see this selection process very 

clearly. First we need to take a little tour of several number systems and their properties.     

Consider the real numbers. In the beginning of high school, the teacher draws the real number line on the 

board and says that these are all the numbers one will ever need. Given two real numbers, we know how 

to add, subtract, multiply and divide them. They comprise a number system that is used in every aspect of 

science. The real numbers also have an important property: they are totally ordered. That means that 

given any two different real numbers, one is less than the other. Just think of the real number line: given 

any two different points on the line, one will be to the right of the other. This property is so obvious that it 

is barely mentioned.  

While the real numbers seem like a complete picture, the story does not end there. Already in the 16
th
 

century, mathematicians started looking at more complicated number systems. They began working with 

an “imaginary” number i which has the property that when it is squared it is -1. This is in stark contrast to 

any real number whose square is never negative. They defined an imaginary number as the product of a 

real number and i. Mathematicians went on to define a complex number that is the sum of a real numbers 

and an imaginary numbers. If r1 and r2 are real numbers, then r1+r2i is a complex number. Since a complex 

number is built from two real numbers and we usually draw all of them in a two-dimensional plane. The 

real number line sits in the complex plane. This corresponds to the fact that every real number, r1, can be 

seen as the complex number r1+0i. 

We know how to add, subtract, multiply, and divide complex numbers. However, there is one property 

that is different about the complex numbers. In contrast to the real numbers, the complex numbers are not 

totally ordered. Given two complex numbers, say 3 + 7.2i and 6 - 4i, can we tell which one is more and 

which one is less? There is no obvious answer.  (In fact, one can totally order the complex numbers but 

the ordering will not respect the multiplication of complex numbers.) The fact that the complex numbers 

are not totally ordered means that we lose structure when we go from the real numbers to the complex 

numbers.  

The story is not over with the complex numbers. Just as one can construct the complex numbers from 

pairs of real numbers, so too can one construct the quaternions from pairs of complex numbers. Let c1 = r1 

+ r2i and c2 = r3 + r4i be complex numbers; then we can construct a quaternion as q = c1 + c2j where j is a 

special number. It turns out that every quaternion can be written as   

r1 + r2i + r3j + r4k, 
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where i, j, and k are special numbers. So while the complex numbers are comprised of two real numbers, 

the quaternions are comprised of four real numbers. Every complex number r1 + r2i can be seen as a 

special type of quaternion: r1+ r2i + 0j + 0k. We can think of the quaternions as a four-dimensional space 

which has the complex numbers as a two-dimensional subset of it. We humans have a hard time 

visualizing such higher-dimensional spaces.  

The quaternions are a full-fledged number system. They can be added, subtracted, multiplied and divided 

with ease. Like the complex numbers, they fail to be totally ordered. But they have even less structure 

than the complex numbers. While the multiplication of complex numbers is commutative, that is, for all 

complex numbers c1 and c2 we have that c1c2 = c2c1, this is not true for all quaternions. This means there 

are quaternions q1 and q2 such that q1q2 is different than q2q1.   

This process of doubling a number system with a new special number is called the “Cayley–Dickson 

construction,” named after the mathematicians Arthur Cayley and Leonard Eugene Dickson. Given a 

certain type of number system, one gets another number system that is twice the dimension of the original 

system. The new system that one develops has less structure (i.e. fewer axioms) than the starting system.  

If we apply the Cayley–Dickson construction to the quaternions, we get the number system called the 

octonions. This is an eight-dimensional number system. That means that each of the octonions can be 

written with eight real numbers as 

r1+ r2i + r3j + r4k +r5l + r6m + r7n + r8p. 

Although it is slightly complicated, how to add, subtract, multiply, and divide octonions is known. Every 

quaternion can be written as a special type of octonion in which the last four coefficients are zero. 

Like the quaternions, the octonions are neither totally ordered nor commutative. However the octonions 

also fail to be associative. In detail, all the number systems that we have so far discussed possess the 

associative property. This means that for any three elements, a, b, and c, the two ways of multiplying 

them, a(bc) and (ab)c, are equal. However the octonions fail to be associative. That is, there exists 

octonions o1, o2 and o3 such that o1(o2o3) ≠ (o1o2)o3.    

We can go on with this doubling and get an even larger, sixteen-dimensional number system called the 

sedenions. In order to describe a sedonian, one would have to give sixteen real numbers. Octonions are a 

special type of sedonian: their last eight coefficients are all zero. But researchers steer clear of sedenions 

because they lose an important property. While one can add, subtract, and multiply sedenions, there is no 

way to divide them. Most physicists think this is beyond the pale and “just” mathematics. Even 

mathematicians find sedenions hard to deal with. One can go on to formulate 32-dimensional number 

systems and 64-dimensional number systems, etc. But they are usually not discussed because, as of now, 

they do not have many applications. We will concentrate on the octonions.  

Let us discuss the applicability of these number systems. The real numbers are used in every aspect of 
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physics. All quantities, measurements, and lengths of physical objects or processes are given as real 

numbers. Although complex numbers were formulated by mathematicians to help solve equations (i is the 

solution to the equation x
2 

= -1), in the middle of the 19
th
 century, physicists started using complex 

numbers to discuss waves. In the 20
th
 century, complex numbers became fundamental for the study of 

quantum mechanics. By now, the role of complex numbers is very important in many different branches 

of physics. The quaternions show up in physics but are not a major player. The octonions, the sedenions, 

and the larger number systems rarely arise in the physics literature.  

 

The laws of mathematics that we find 

The usual view of these number systems is to think that the real numbers are fundamental while the 

complex, quaternions, and octonions are strange larger sets that keep mathematicians and some physicists 

busy. The larger number systems seem unimportant and less interesting.  

Let us turn this view on its head. Rather than looking at the real numbers as central and the octonions as 

strange larger number systems, think of the octonions as fundamental and all the other number systems as 

just special subsets of octonions. The only number system that really exists is the octonions. To 

paraphrase Leopold Kronecker, "God made the octonions, all else is the work of man." The octonions 

contain every number that we will ever need. (And, as we stated earlier, we can do the same trick with the 

sedenions and even the 64-dimensional number system. We shall fix our ideas with the octonions.)  

Let us explore how we can derive all the properties of the number systems that we are familiar with. 

Although the multiplication in the octonions is not associative, if one wants an associative multiplication, 

one can look at a special subsets of the octonions. (We are using the word “subset” but we need a special 

type of subset that respects the operations of the number system. Such subsets are called “subgroups,” 

“subfields,” or “sub-normed-division-algebras,” etc. For the reader’s benefit, we use “subset.”) So if one 

selects the subset of all octonions of the form 

r1+ r2i + r3j + r4k + 0l + 0m + 0n + 0p, 

then the multiplication will be associative (like the quaternions). If one further looks at all the octonions 

of the form 

r1+ r2i + 0j + 0k + 0l + 0m + 0n + 0p, 

then the multiplication will be commutative (like the complex numbers). If one further selects all the 

octonions of the form 

r1+0i + 0j + 0k +0l + 0m + 0n + 0p, 

then they will have a totally ordered number system. All the axioms that one wants satisfied are found 
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“sitting inside” the octonions.  

This is not strange. Whenever we have a structure, we can focus on a subset of special elements that 

satisfies certain properties. Take, for example, any group. We can go through the elements of the group 

and pick out those X such that, for all elements Y, we have that XY = YX. This subset is a commutative 

(abelian) group. That is, it is a fact that in any group there is a subset which is a commutative group. We 

simply select those parts that satisfy the axiom and ignore (“bracket out”) those that do not. The point we 

are making is that if a system has a certain structure, special subsets of that system will satisfy more 

axioms than the starting system. 

This is similar to what we are doing in physics. We do not look at all phenomena. Rather, we pick out 

those phenomena that satisfy the requirements of symmetry and predictability. In mathematics, we 

describe the subset with the axiom that describes it. In physics, we describe the selected  subset of 

phenomena with a law of nature.  

 

Working in tandem and going forward 

We have shown that there is an important analogy between physics and mathematics. In both 

fields, if we do not look at the entirety of a system, but rather look at special subsets of the 

system, we see more structure. In physics we select certain phenomena (the ones that have a type 

of symmetry) and ignore the rest. In mathematics we are looking at certain subsets of structures 

and ignore the rest. These two bracketing operations work hand in hand.  

 

The job of physics is to describe a function from the collection of observed physical phenomena 

to mathematical structure: 

 

observed physical phenomena  mathematical structure. 

 

That is, we have to give mathematical structure to the world we observe. As physics advances and 

we try to understand more and more observed physical phenomena, we need larger and larger 

classes of mathematics. In terms of this function, if we are to enlarge the input of the function, we 

need to enlarge the output of the function.  

 

Some examples of this broadening of physics and mathematics are needed. (i) When physicists 

started working with quantum mechanics they realized that the totally ordered real numbers are 

too restrictive for their needs. They required a number system with fewer axioms. They found the 

complex numbers. (ii) When Albert Einstein wanted to describe general relativity, he realized that 

the mathematical structure of Euclidean space with its axiom of flatness (Euclid’s fifth axiom) 

was too restrictive. He needed curved, non-Euclidian space to describe the space-time of general 
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relativity. (iii) In quantum mechanics it is known that for some systems, if we first measure X and 

then Y, we will get different results than first measuring Y and then measuring X. In order to 

describe this situation mathematically, one needed to leave the nice world of commutativity. They 

required the larger class of structures where commutativity is not assumed. (iv) When Boltzmann 

and Gibbs started talking about statistical mechanics, they realized that laws they were coming up 

with were no longer deterministic. Outcomes of experiments no longer either happen (p(X) = 1) 

or do not happen (p(X) = 0). Rather, with statistical mechanics one needs probability theory. The 

chance of a certain outcome of an experiment is a probability (p(X)) is an element of the infinite 

set [0,1] rather than the restrictive finite subset {0,1}). (v) When scientists started talking about 

the logic of quantum events, they realized that the usual logic, which is distributive, is too 

restrictive. They needed to formulate the larger class of logics in which the distributive axiom 

does not necessarily hold true. This is now called quantum logic. Many other examples exist. 

 

Paul A.M. Dirac understood this loosening of axioms about 85 years ago when he wrote the 

following: 

 

The steady progress of physics requires for its theoretical formulation a mathematics 

which get continually more advanced. This is only natural and to be expected. What 

however was not expected by the scientific workers of the last century was the particular 

form that the line of advancement of mathematics would take, namely it was expected 

that mathematics would get more and more complicated, but would rest on a permanent 

basis of axioms and definitions, while actually the modern physical developments have 

required a mathematics that continually shifts its foundation and gets more abstract. Non-

euclidean geometry and noncommutative algebra, which were at one time were 

considered to be purely fictions of the mind and pastimes of logical thinkers, have now 

been found to be very necessary for the description of general facts of the physical world. 

It seems likely that this process of increasing abstraction will continue in the future and 

the advance in physics is to be associated with continual modification and generalisation 

of the axioms at the base of mathematics rather than with a logical development of any 

one mathematical scheme on a fixed foundation. 

 

As physics progresses and we become aware of more and more physical phenomena, larger and larger 

classes of mathematical structures are needed and we get them by looking at fewer and fewer axioms. 

There is no doubt that if Dirac lived now, he would talk about the rise of octonions and even the 

sedenions within the needed number systems.  

In order to describe more phenomena, we will need larger and larger classes of mathematical structures 

and hence fewer and fewer axioms. What is the logical conclusion to this trend? How far can this go? 

Physics wants to describe more and more phenomena in our universe. Let us say we were interested in 
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describing all phenomena in our universe. What type of mathematics would we need? How many axioms 

would be needed for mathematical structure to describe all the phenomena? Of course, it is hard to predict 

but it is even harder not to speculate. One possible conclusion would be that if we look at the universe in 

totality and not bracket any subset of phenomena, the mathematics we would need would have no axioms 

at all. That is, the universe in totality is devoid of structure and needs no axioms. There are just plain sets 

without structure. This would finally eliminate all metaphysics when dealing with the laws of nature and 

mathematical structure. It is only the way that we look at the universe that gives us the illusion of 

structure.  

With this view of physics we come to even more profound questions. These are the future projects of 

science.  If the structure that we see is only an illusion, then why do we see this illusion? Instead of 

looking at the laws of nature that are formulated by scientists, we have to look at scientists and the way 

they pick out (subsets of phenomena and their concomitant) laws of nature. What is it about human beings 

that renders us so good at being sieves? Why do we have the illusion of aims and goals for physical 

processes? Rather than looking at the universe, we should look at the way we look at the universe. 

 

  

(I am grateful to Jim Cox, Avi Rabinowitz, Karen Kletter, and Karl Svozil for many helpful 

conversations.) 
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