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“In the standard positivist approach to the philosophy of science, physical theories live rent free in a 

Platonic heaven of ideal mathematical models. That is, a model can be arbitrarily detailed and can contain 

an arbitrary amount of information without affecting the universes they describe. But we are not angels, 

who view the universe from the outside. Instead, we and our models are both part of the universe we are 

describing. Thus a physical theory is self referencing, like in Gödel’s theorem. One might therefore 

expect it to be either inconsistent or incomplete. The theories we have so far are both inconsistent and 

incomplete.” 

- Stephen Hawking, Gödel and The End of Physics [1] 

 

[- Introduction -] 

 As scientists, when we think of “mathematics” we typically think of algebra, geometry, or 

calculus-- cold equations, rote calculations, and endless symbols. Certainly, if physics and the natural 

sciences as a whole seek to be complete and consistent, it is necessary that the mathematics serving as 

both its language and foundation be just as rigid. But what if this is not the case? What if the 

mathematical substrate that underlies all our physical theories is inherently vulnerable to outside entities 

that may penetrate such structures and completely transform them? These are the implications of current 

philosophical work being done on the development of mathematical set theory; this set theory being 

widely held to ground all our mathematics, and therefore having a profound influence on how our theories 

are structured and formalized. 

 Our goal in this paper will be twofold: 1) To counter the modern dogma amongst scientists that 

mathematics is but just another “useful language game”, who's complex foundations can be disregarded in 

the service of “what works best” in practice, and 2) to show how a modern understanding of these 

foundations can inform the very mechanism by which scientific revolutions occur, and why there can be 

no conceivable stopping point to discovery and change. 

 In particular, this paper will closely follow the works of French philosopher Alain Badiou, whose 

body of texts has only recently begun translation into English. Our specific interests will be in his 1988 

philosophical masterpiece Being and Event, and 1990’s treatise on number theory Number and Numbers 

[EN 0]. While Badiou's work is grounded in the foundations of mathematics, he is nevertheless able to 

use this foundation to think through revolutions in such afar fields as politics, music, and art. The wager 

of his work is that the ability of set-theoretical mathematics to allow for novelty, revolution, and change 

in what are typically considered rigid and unmovable systems offers a similar model of transformation for 

these extra-mathematical fields of thought; that mathematics is, as the Greeks believed, the ultimate 

descriptor of our worlds, but that it also describes how these worlds undergo radical changes. 

 For us scientists, this will mean re-recognizing the primary place of mathematics in our scientific 

theories, and seeing in its paradoxes and transforming capabilities the very reasons why our now ancient 



dreams of consistent and complete physical formalizations are but illusions which will always give way to 

revolution and change. Such an appreciation can enlighten us to the true nature of physical theories, the 

weaknesses inherent within them, and the revolutions they undergo as a result. 

 We will begin with a topic usually overlooked in basic scientific education: the method by which 

numbers are constructed, via set theory. This will lead us directly to the outstandingly unsolved 

Continuum Problem, its two suggested solutions, and how these approaches affect the structure of our 

scientific theories. Finally, a novel (albeit brief) case study of the Einsteinian revolution from the 

Newtonian world will follow as a demonstration [EN 1]. 

 Mathematics must once again be privileged as the immovable foundation of physics, but also 

understood as having the resources to allow for unpredictable and radical change. 

 

[- The Construction of Number -]  

 From the outset of his Number and Numbers, Alain Badiou proposes, “A paradox: …we have at 

our disposal no recent, active idea of what number is… We know very well what numbers are for: they 

serve, strictly speaking, for everything, they provide a norm for All. But we still don’t know what they 

are…” [2, italics mine]. Lamenting the modern day role of number as that which is relegated to pure 

arithmetic, Badiou proposes a journey through the genealogy of the concept of number in history. 

 While Badiou's exposition of the history of constructing numbers from the Greeks through the 

great mathematicians of Frege, Dedekind, Peano, Cantor, and Conway is quite fascinating in its own 

right, we shall review the particular contributions of Georg Cantor to this history. The fundamental 

question of concern to all these thinkers was the following: Is it possible to think of numbers neither as 

empirical, nor as transcendental, but as a production of thought itself? That is, can we construct numbers 

on the basis of thought alone, axiomatically, and not rely on flawed conscious observations on the one 

hand, nor the rule of God on the other? To be able to achieve such a feat would allow for a unique realm 

of thought untainted by the complications of perception and the aporias of mysticism.  

 Cantor provides us with a novel "set-theoretical" approach to constructing numbers. Within the 

development of this set theory it is crucial to note that there is no explicit definition of what a set is, and 

therein lies the beauty of the conceptual edifice-- it does not rely on an a priori description of a set and its 

elements via empirical predicates. While it is intuitive to think of sets as "collections of objects", it is not 

necessary to define what these objects are beforehand, and these objects (or elements) may be sets 

themselves. All that is required is the concept of "belonging" [EN 2]. We should also note that “sets” may 

also be referred to as “multiples” (and that Badiou prefers to use this convention). 

 A fundamental function one can perform over any set is that of creating its “power set”, or the set 

made up of all the “inclusions” or “parts” of the initial set. For example, if A = {x,y,z}, the power set 

p(A) = {∅, x, y, z, {x,y}, {y,z}, {x,z}, {x,y,z}}, keeping in mind that an empty set is an implicit element 

of every set (see below). For all finite sets A of size n, the number of elements in p(A) will equal 2
n
. The 

power set is a general feature of all sets [EN 3]. 



 To construct the natural numbers, one starts with the "empty set", or the set that contains no 

elements. This empty set is marked ∅. Next, one can construct a set that contains the empty set, by taking 

the power set of the empty set: [∅], this set containing a single element, the empty set. This process can 

be continued ad infinitum [EN 4]. The perceptive reader will notice that these enumerations correspond to 

what we know as the "ordinal" (or "natural") numbers: ∅ = 0,  [∅] = 1, [∅, {∅}] = 2, [∅, {∅}, {∅,{∅}} ] = 

3 , and so forth. 

The genius of Cantor was to then identify a “limit ordinal”, ω0, which represents the set of all 

these possible ordinal numbers. ω0 is the first "infinity", and is given the "cardinality", or size, 0א ;0א 

being the first “infinite cardinal” [EN 5]. It suffices to describe ω0 as the first set which, while "full" of all 

the ordinal numbers, does not succeed from a previous number. Just as how the empty set forms the initial 

basis for the construction of finite ordinals, with no predecessor of its own, ω0  is the basis for infinte 

numbers, and 0א the basis for infinite cardinals. Badiou comments, "On condition of the existence of the 

void [empty set], there is 1, and 2, and 3..., all successors. But a limit ordinal? ...we find ourselves on the 

verge of the decision on the infinite. No hope of [empirically] proving the existence of a single limit 

ordinal. We must make the great modern declaration: the infinite exists, and, what is more, it exists in a 

wholly banal sense, being neither revealed (religion), nor proved (mediaeval metaphysics), but being 

simply decided, under the injunction of being, in the form of number... That is infinite which, not being 

void [or empty], meanwhile does not succeed" [3]. But, just as ∅ is succeeded by [∅] (or 0 by 1) with no 

ordinal remainder between the two, the infinite cardinal 0א must be succeeded by the "next" infinite size 

of 1א, with no remainder in-between. 

 

[- The Continuum Problem -] 

The “Continuum Hypothesis” (hereafter “CH”) arose from the simple question of “how many 

points are on a line?”, or, equivalently, "how many real numbers exist?". Cantor was able to successfully 

demonstrate that the size of the set of real numbers (comprised of all the rational numbers, irrational 

numbers, and transcendental numbers) that form the linear continuum equals the size of the set of all 

subsets of the natural numbers (or the power set of ω0). Thereby, Cantor believed he had solved part of 

the ancient continuum question-- the size of the linear continuum must equal the cardinality 2
א 
0 [EN 6].  

Now, the crux of the Continuum Hypothesis would rest on the following equation: 2
א 
0 must 

equal 1א, the next possible infinite measure. The proof of such an equation would represent the totality of 

all real numbers with no remainder between the amount of natural numbers (0א) and the amount of real 

numbers (1א), thus achieving the goal of a well-ordered, structured, universe of numbers apprehended by 

thought alone. But could this equation be proven? If not, it would suggest that the size of the continuum 

could be identified with any other infinite measure. That is, all we know is 2
א 
 ?but by how much ,0א < 0

If 2
א 
 then the continuum could not be said to have an upper limit on its cardinality, and infinite ,1א ≠ 0

disorder would reign-- untold of possibilities of sets would be possible between the natural numbers and 



real numbers. 2
א 
0 could possibly equal 450א ,77א ,2א... practically any infinite cardinal. So, instead of 

binding the universe of numbers to the demands of order and structure, Cantor had unexpectedly 

unleashed the possibility of an infinite amount of infinities. [4][5] 

Cantor's inability to prove or disprove his continuum hypothesis eventually drove him mad and 

led him to suicide. But this Pandora's Box he had opened led to the infamous "Continuum Problem" 

(hereafter “CP”): Is the size of the power set of the natural numbers-- the very continuum-- equal to the 

second infinite cardinal? Is 2
א 
 ?1א = 0

 

[- The Axiomatization of Set Theory -] 

The generation of the Continuum Problem is paramount, as it is this set-theoretic universe of 

Cantor’s that was properly axiomatized by Ersnt Zermelo and Abaraham Fraenkel in the early 1900s, 

forming the ZFC axiom system [EN 7] that provides the very foundation of mathematics; therefore of the 

very algebra and geometry that ground our physical sciences [6][7]. Through nine basic axioms the whole 

known mathematical universe could be derived. Some of these axioms we have already encountered: the 

Null-Set Axiom, the Axiom of Infinity, and the Power Set Axiom. The remaining axioms detail further 

regulations and functions of sets. As Peter Hallward comments, "The axiomatization of set theory as the 

foundation for mathematics completed the process begun by Descartes and the arithmetization of 

geometry, namely, the liberation of mathematics from all spatial or sensory intuition. Numbers and 

relations between numbers no longer need to be considered in terms of more primitive intuitive 

experiences (of objects, of nature) or logical concepts. The whole of mathematics could now be thought to 

rest on a foundation of its own making, grounded on its own internally consistent assertion" [8].    

However, at this seemingly complete foundation still lay the Continuum Problem. And the Axiom 

of Foundation (one of the basic nine axioms) also houses a certain peculiarity. This axiom is a direct 

result of Bertrand Russell's famous paradox of self-referencing sets [EN 8]. In order to avoid this 

paradox, the Axiom of Foundation states that for any non-empty set A, there is an element x belonging to 

A such that no sets are shared between A and x [EN 9]. That is, from the perspective of A there are sets 

belonging to the element x that are not “seen” by A. This axiom effectively outlaws any paradoxical sets 

belonging to themselves. However, it also creates the very real possibility of "indiscernible" elements 

from x; elements that are not recognized by the language of A, but are yet real. It is through this axiom 

that “unknown”, “novel”, or “repressed” elements can come to transform a situation by being 

incorporated into it from the “foundation”. (On Badiou’s important concept of “situations” see [EN 10]) 

The Axiom of Foundation effectively lays bare the same conclusions as Gödel's famous First 

Incompleteness Theorem: given any system which is adequate for primitive arithmetic (a “first-order 

predicate calculus”), there exists a predicate such that there is no complete and formal system for it [9]. 

The upshot of these rules is that given a well-formalized system of logical statements (such as in physics) 

there will always be a statement undecidable within that system, leaving the system either inconsistent or 

incomplete. The property of being undecidable is given through the language of the system; that is, the 

language being incapable of rendering a set as either logically “true” or “false” within the situation. 



Consequently, our very use of local languages obstructs certain predicates or propositions from 

completing a set of theories or allowing them to consist absolutely [EN 11]. 

We shall now see how one attempt to circumvent this issue sought to subordinate all sets to a 

global language: that of empirical science. 

 

[- First Approach to the Continuum Problem: Gödel's Constructible Universe -] 

If we return now to CP, we will see in history two distinct attempts to solve it. Kurt Gödel 

provides us with the most pragmatic way of doing so: restrict the universe of sets only to those that 

language can well-form; that is, to only those sets that we have a definable predicate for. These 

“constructible sets” would be those “definable in ZF by expressions which quantify only over sets which 

have been previously defined” [10], and would close such a universe off to any undecidable sets. Not only 

was Gödel able to prove that this constructible universe was a consistent model of ZFC, but he was also 

able to demonstrate the consistency of CH within this model (2
א 
 Intuitively, since working .(1א = 0

mathematicians and scientists can only talk about and experience the natural and real numbers, it is not 

empirical for other numbers (or sets) to intrude on that universe; therefore, such a mathematical universe 

is capped at 1א [EN 12]. As mathematician Thomas Jech summarizes: “Gödel constructed a model of 

ZFC, the constructible universe L, that satisfies CH. The model L is basically the minimal possible 

collection of sets that that satisfies the axioms of ZFC. Since CH is true in L, it follows that CH cannot be 

refuted in ZFC. In other words CH is consistent” [11]. 

However, it is clear that while this constructible universe contains all the known mathematics we 

currently experience, such a universe is in defeat of the original attempt to define the mathematical field 

free of a posteriori descriptions and predicates. This “constructivist” orientation subordinates all of what 

we can possibly know to the dominate language: “In its essence, constructivist thought is a logical 

grammer. Or, to be exact, it ensures that language prevails as the norm for what may be acceptably 

recognized as one-multiple amongst representations. The spontaneous philosophy of constructivist 

thought is radical nominalism... the [scientific] state is the master of language. Language-- or any 

comparable apparatus of recognition-- is the legal filter for groupings of presented multiples” [12].  

One may quickly recognize in this constructivist orientation the promise of “scientific 

positivism”; a dogma that is still present in the sciences today as a mechanism to thwart off rival 

languages or epistemologies. Positivism claims science to have a privileged language for describing the 

world, and that at the end of scientific inquiry a well-formed language will be capable of describing all 

physical phenomena. This collusion between positivist dogma and constructivism does not escape 

Badiou’s eye, and he is worth quoting at length:  

“... one considers that the language of positive science is the unique and definitive ‘well-made’ 

language, and that it has to name the procedures of construction, as far as possible, in every domain of 

experience. Positivism considers that presentation is a multiple of factual multiples, whose marking is 

experimental; and that constructible liasons, grasped by the language of science, which is to say in a 

precise language, discern laws therein... one must confine oneself to controllable facts: the positivist 



matches up clues and testimonies, experiments and statistics, in order to guarantee belonging... Under the 

injunction of constructivist thought, positivism devotes itself to the ill-rewarded but useful tasks of the 

systematic marking of presented multiples, and the measurable fine-tuning of languages. The positivist is 

a professional in the maintenance of apparatuses of discernment” [13, italics mine] 

Gödel's solution binds the universe to what can be empirically observed and tested (“discerned”), 

closing it off to any elements which may disrupt the language guiding these observations and tests. 

Positivism thereby proceeds through the construction of scientific theories rendered by a pre-existing and 

dominate language, but what this language deliberately casts aside to make its structure seemingly 

complete and consistent, through various unchecked assumptions and prejudices, is often overlooked. We 

will see a profound case of this in our study of the Einsteinian revolution. 

 

[- Second Approach to the Continuum Problem: Cohen's Use of Forcing -] 

What we must note is that while Gödel was able to show that CH is consistent with ZFC using the 

model of a constructible universe, he was still unable to prove CH conclusively. And this is where the 

piece de resistance of Badiou’s Being and Event lies-- it is in reality for these well-made languages and 

constructible sets to be overrun and transformed by sets literally “forced” into a given situation. Such was 

the fruit of Paul Cohen’s attempt to solve the Continuum Problem in 1966. Cohen developed a technique 

that he called “forcing”, whereby he could create a model of ZFC where CH was deemed false. Jech 

recapitultes, “Cohen’s accomplishment was that he found a method for constructing other models of ZFC. 

The idea is to start with a given model M (the ground model) and extend it by adjoining an object G [a 

“generic set”]... Cohen showed how to find (or imagine) the set G so that CH fails in M[G]. Thus CH is 

unprovable in ZFC…”[14]. The forcing of a generic set into a constructible universe invalidates CH, and 

2
א 
  .1א ≠ 0

We mentioned that a direct outcome of the Axiom of Foundation is that every structure has an 

undecidable impasse. It is these undecidable sets that Badiou (after Cohen) terms “indiscernible” or 

“generic” sets; sets that are not constructible by the current language or its properties either because they 

were deliberately foreclosed from the situation, or because they have yet to be discovered [EN 13].  

The derivation of the forcing method, forcing conditions, and subsequent transformations is 

notoriously complex and difficult [EN 14]. However, we can detail the major properties and 

consequences. If we start with a given (constructible) situation composed of sets, the situation will 

naturally contain “discernible” sets, or sets that can be deemed true or false via the situation's well-made 

language [EN 15]. However, there will also exist indiscernible sets, which do not disclose their elements 

to the situation. “Thus for an inhabitant of S(G) [any situation with a generic set], there does not exist any 

intelligible formula in her universe which can be used to discern G.” [15]. 

How these indiscernibles are “grasped” by those in the situation involves a theory of “forcing 

conditions”: “... the elements of the base multiple chosen in the fundamental quasi-complete situation will 

be called conditions (for the indiscernible G)… certain groupings of conditions, conditions which are 

themselves conditioned in the language of the situation, will make it possible to think [an indiscernible 

multiple]... The idea is then that of seeing what happens if, by force, this indiscernible is 'added' or 'joined' 



to the situation... from a given situation, one can construct another situation by means of the 'addition' of 

an indiscernible multiple of the initial situation” [16]. The generic set is captured, not through some 

“mystical” language, but by using approximate local descriptions which show themselves as “true” or 

“false” as the generic set is incorporated into the situation and tested for its veracity amongst all the other 

sets and elements of the situation. 

In this way, interested inhabitants of the situation can attempt to apprehend a generic set using 

their own language, and “force” it to be part of their situation. This procedure requires what Badiou calls 

an initial “nomination” or “declaration” of the generic set, followed by an “investigation” by committed 

groups or individuals, where they must assess, point-by-point, how inclusion of this generic set changes 

the languages and existences of their initial situation (this procedure the same as which occurs on the 

mathematical level when a generic set is forced in Cohen's method). Commitment and perseverance are 

important here, as the novel or disregarded nature of a generic set is likely to come up against the laws, 

rules, and dictates of the quasi-complete situation [EN 16].  

Thus is the method of scientific discovery par excellence-- incorporation of the unknown, tested 

for its veracity against every known piece of the current situation by committed individuals, typically 

against the contemporary tide. What we see in the procedure of forcing is an inherent ability, right at the 

foundation of mathematics, to inject novelty and true change into a given situation set, whether it be 

political, artistic, or scientific. It is, at its heart, the true scientific procedure-- an egalitarian procedure-- 

taking finite and incomplete information about something new or put aside in a world, and testing to see 

how it impacts the current state of affairs for all.  

In going from Gödel to Cohen, we go from a closed and fully describable universe to one that is 

infinitely open to novelty and discovery; from one we may eternally hold, to one we must forever grasp 

at. 

 

[- Case Study: Non-Euclidean Geometry and the Einsteinian Revolution -] 

We will now demonstrate the importance of forcing through an historical example. Badiou and 

his many commentators utilize examples ranging from the political, to the artistic, to the mathematical. 

However, they hardly use any examples from the physical sciences. I hope that this brief exposition will 

inspire more to follow along this path [EN 17]. 

Let us take the Newtonian universe as our situation. This is a situation that thought itself virtually 

consistent and complete: the universe consisted of point particles that could be fully characterized by their 

mass and velocity, and all abide by Newton’s laws. The latent assumption of this entire system was 

deceivingly simple: the universe followed a Euclidean geometry.  

Geometry came into being circa 300BC with the writing of Euclid’s legendary Elements. 

Euclidian geometry follows from five basic postulates, with the controversy being in the fifth postulate, or 

the “Parallel Postulate” [EN 18]. It wasn't until the 18
th
 century (1,400 years!) that doubt grew over this 

postulate. Two “non” Euclidian geometries (what later became known as Lobachevskian/Hyperbolic and 

Riemannian/Elliptic geometry, respectively) were both put forward as replacements for the shaky fifth 



postulate. We shall have to pass over the details of what is, once again, a fascinating history of 

development, but these two geometries primarily result in curved spaces [EN 19]: 

 

T 

 

 

 

 

The very possibility of these non-Euclidian geometries posed a huge problem for how the 

physical universe’s geometric foundations were perceived. As with the history of set-theory, the goal was 

always toward a singular, rigid, immovable foundation. Howard DeLong notes: “…society may develop 

customs to make it more unlikely that [an expert’s] belief be questioned. We may then speak of a social 

prejudice. In this sense there was in Europe at the end of the 18th century a social prejudice consisting of 

the belief that Euclidean geometry was true... the intellectual climate was such that a questioning of this 

tradition met not so much with refutation as with derision” [17]. 

As we now know, it took committed individuals, such as Albert Einstein, to try and incorporate 

these suppressed geometries into our current scientific worldview. And even for Einstein, it had to start as 

a thought experiment prior to any possible empirical testing. DeLong notes, “... how about empirical 

observation? Is Riemannian geometry true of the world? Unfortunately, very few people in the 19
th
 

century took this question seriously. Riemann did... But Riemann died at 39... perhaps [he] would have 

preceded Einstein in the Theory of Relativity, for that theory proposes that a generalized version of 

Riemannian geometry is true of physical space” [18]. 

Einstein, however, took it very seriously. As Michael Freidman assesses: “... these mathematical 

and philosophical developments [concerning non-Euclidian geometries] formed the indispensable 

background to Einstein’s formulation of the theory of relativity, and they were taken as such by Einstein 

himself... the lesson of the theory of relativity is not, as one might expect, that Euclidean geometry is a 

false description of physical space. It is rather, following [mathematician Henri] Poincare, that there is no 

fact of the matter about the geometry of physical space: choosing one or another physical geometry is not 

forced upon us by any observable facts but rather depends on a prior convention or stipulation without 

which the question of physical geometry is simply undefined” [19, italics mine]. 

It is clear that non-Euclidean geometry was an undecidable proposition and represented an 

indiscernible set of the Newtonian situation. In order for the Newtonian world to appear complete and 

consistent, a dogma was propagated to claim such geometries as absurd and practically useless. Through 

the forcing of non-Euclidian geometry into the Newtonian system, and the testing of its consequences 

point-by-point, the fabric of Nature itself was rewoven. 

 



[- Conclusion -] 

 Through our exposition of set-theory and the CP approaches, we have shown how the very 

mathematics that we take for granted to rigidly ground our physical sciences is itself riddled with paradox 

and complexity. Of course, we may (naively) reject this history and its results, but even “those few 

mathematicians who still reject Cantor’s theory must also reject large parts of classical mathematics… 

[set theory] provided a blow to the notion that our clear and distinct intuitions are criteria for truth” [20]. 

While this may permanently shatter our traditional visions of the physical sciences achieving some sort of 

unchanging and Archemedian view on the universe, we have also seen how this modern understanding of 

mathematics allows within its very being a way for us to apprehend and incorporate those theories we 

have unjustly placed aside and those great discoveries still yet to be had. 

 I propose that there should be a greater interest on the part of working scientists to address how 

mathematics directly impacts their theory choice. More importantly will be an assessment of how those 

theories we have discarded or prejudiced can still exert far-reaching effects on our current scientific 

principles. Badiou and his acolytes have already begun such historiographical cataloguing and description 

of these “inexistents” in other fields. This post-modern idea of all structures (whether scientific, political, 

artistic, etc.) containing congenital defects and impasses which allow for their eventual deconstruction 

and rebuilding is one Badiou has successfully been able to formalize and make accessible to us scientists 

in our very own mathematical language. I hope that this paper will motivate more scientists to read (and 

undoubtedly struggle with) Badiou's work and its consequences, as well as inspire them to interrogate 

their own fields and the place of science as a whole. 

 It is mathematics we must assert as the privileged language of our thought and experience. There 

is an endless reality out there to be discovered, with the mere inconvenience that the more we try to 

structure that reality, the more slips through our mortal fingers. As we began with a quote by Stephen 

Hawking on how he viewed the impact of these foundational issues, let us also end with his reflection:  

“Some people will be very disappointed if there is not an ultimate theory that can be formulated 

as a finite number of principles. I used to belong to that camp, but I have changed my mind. I'm now glad 

that our search for understanding will never come to an end, and that we will always have the challenge of 

new discovery. Without it, we would stagnate.” [21]  
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End Notes [EN] 
 

[EN 0] To be consistent, I will be reproducing Badiou’s demonstrations of the set theoretical literature, where applicable. 

The only exception being in the symbolism of the “generic” or “indiscernible” set: while Badiou uses ♀ for philosophical 

reasons, I have used G to follow the mathematical convention. 

 

[EN 1] Before we move forward, for those who would like an excellent and more “accessible” review of the initial path we 

shall take from Cantorian to Non-Cantorian set-theory, I highly recommend the 1967 Scientific American article co-written 

by Paul Cohen himself. See: Paul Cohen and Reuben Hersh, “Non-Cantorian Set Theory”. Scientific American, Vol. 217, 

No.6 (1967) pp.104-116 

  

[EN 2] “...set theory distinguishes two possible relations between multiples. There is the originary relation, belonging, 

written ∈, which indicates that a multiple is counted as element in the presentation of another multiple”. So if A = 

[x,y,{z,w}], then x∈A, y∈A, and {z,w}∈A. “But there is also the relation of inclusion, written ⊂, which indicates that a 

multiple is a sub-multiple of another multiple... the writing � ⊂ �, which reads � is included in �, or � is a subset of �, 

signifies that every multiple which belongs to � also belongs to �: ����	�� ∈ �� 
 �� ∈ ���”. So if B = [{x,y,z}, h], then 

[{x,y,z}]⊂B, [h]⊂B, and [{x,y,z},h]⊂B. Note that inclusion can be reduced to the primary relation of belonging. [Alain 

Badiou, Being and Event, 81]  

 

[EN 3] Power set Axiom (or Subset Axiom): “If a is a set and F(x) is any well-formed expression in the language of ZF 

[axiomatic set theory] with a single free variable, then there is a set b whose elements are those elements of a for which F(a) 

is true. �x ∃y �z [z ∈ y ⟷ z ∈ x & F(z)]” [Mary Tiles, The Philosophy of Set Theory, 122]. Note that the power set is simply 

the group of inclusions or subsets of the original set, as defined in [EN 2]. 

 

[EN 4] If A = ∅, then B = p(A) = [∅]. C = p(B) = [∅, {∅}]. D = p(C) = [ ∅, {∅}, {∅, {∅}} ]. And so forth. [Mary Tiles, The 

Philosophy of Set Theory, 125 and 134]  

 

[EN 5] For Cantor’s construction of ω0 and 0א, see Mary Tiles, The Philosophy of Set Theory, 104-107 and/or Howard 

DeLong, A Profile of Mathematical Logic, 71-81. While [ ∅, {∅}, {∅, {∅}} ], for example, can be given a finite size, or 

“cardinality” of 3 (as it has 3 elements), when it comes to infinite quantities we must use a new counting system. These are 

the infinite, or "transfinite", cardinals designated by the aleph א. So ω0 is said to have a cardinality of 0א elements (an 

“infinity” of elements). Mind here that an unintended consequence of Cantor’s construction is that there may be “many” 

infinities; the modern study of which is the study of “large cardinals”. 

[EN 6] This derivation of the set of real numbers involves Cantor’s celebrated “diagonal argument”. See: Mary Tiles, The 

Philosophy of Set Theory, 107-111 and/or Howard DeLong, A Profile of Mathematical Logic, 76-81 

[EN 7] “ZF” stands for “Zermelo-Fraenkel” set theory, while ZFC is ZF + the Axiom of Choice. 

[EN 8] Consider a set that does not contain itself as "normal" (for example, the set of all circles is not itself a circle). Now 

consider a set that contains itself as "abnormal" (for example, the set of all non-circles is itself a non-circle). Finally, 

consider the set of all normal sets-- is this set normal or abnormal? It cannot be normal, or it would contain itself and be 

abnormal. It cannot be abnormal, or it would not contain itself and be normal. This is Russell's paradox. (Adapted from 

Howard DeLong, A Profile of Mathematical Logic, 81-82). 

[EN 9] Axiom of Foundation: “Any non-void [non-empty] set posses as least one element whose intersection with the initial 

set is void; that is, an element whose elements are not elements of the initial set. One has β ∈ α but β ⋂ α = ∅. Therefore, if  

γ ∈ β, we are sure that ~( γ ∈ α). It is said that β founds α, or is on the edge of the void [∅] in α” [Alain Badiou, Being and 

Event, 500]. Formally, �x[~(x = ∅) 
 ∃y (y ∈ x & �z (z ∈ x 
 ~(z ∈ y)))] [Mary Tiles, The Philosophy of Set Theory, 122] 

[EN 10] Badiou uses the term “situation” to stand in for any circumscribed group of infinite sets defined by a finite group of 

properties (or predicates). He simply defines a situation as “any consistent presented multiplicity, thus: a multiple [a set of 

sets], and a regime of count-as-one [a set of properties], or structure”. Every situation is structured in a constructible fashion 

(as described later). Badiou is thus able to give concepts such as “political situation”, “artistic situation”, or “scientific 

situation” a rigorous set-theoretically based structure. The wager, again, of his work is that as paradoxes are part of the 



general set-theoretical edifice, so will they be of these situations. At these points of paradox, or stress, every situation is 

open to the forcing of “generic” sets that can overrun and transform that situation (again, described later). [Alain Badiou, 

Being and Event, 522 and Meditation One] 

[EN 11] On what a “predicate” is: “The central notion to be explained is that of a propositional function (or predicate, as it 

will also be called). Let there be fixed some nonempty domain of discourse, that is, some set of objects which our logic will 

be about. Examples may include the set of physical objects, the set of living animals, or the set of natural numbers. The 

members of the domain of discourse will be called individuals. An n-place propositional function (or n-place predicate) is a 

function of n individual variables, where the domain of definition is the domain of discourse and the domain of values is a 

set of propositions. Hence, when each variable in a propositional function (predicate) has assigned to it an individual, the 

result is a proposition.” [Howard DeLong, A Profile of Mathematical Logic, 111]. The notion of a predicate allows one to 

“separate” out the objects of our experience, as sets, through the use of language. These predicates may then be marked as 

“true” or “false” in their consistency with the rest of the predicates of the system. The crucial finding of Gödel’s First 

Incompleteness Theorem is that there will always exist a predicate “undecidable” within the system—it cannot be shown to 

be either true or false. This undecidable set leaves the system either incomplete or inconsistent. 

[EN 12] It is goal of Badiou’s Number and Numbers to show this to be patently false, and the whole second half of the book 

is dedicated to expounding John Conway’s theory of “surreal numbers”, which suggests whole universes of numbers beyond 

what us scientists and mathematicians experience in practice. (See also: John Conway, On Numbers and Games. London: 

Academic Press (1976) ). As one can imagine, the existence of such numbers would invalidate the Continuum Hypothesis, 

and be a support of Paul Cohen’s Non-Cantorian set-theory (to be described). 

[EN 13] “A part of the situation is indiscernible if no statement of the language of the situation separates it or discerns it. 

Or: a part is indiscernible if it does not fall under an encyclopaedic determinant”. Formally, for a given situation S, and 

indiscernible set G: ~(G ∈ S), but G ∈ S(G) if forced into S. [Alain Badiou, Being and Event, 386 and 512] 

[EN 14] While Badiou provides a faithful account of the generic and forcing within his philosophical system (see Being and 

Event, Meditations Thirty-One, Thirty-Three, Thirty-Four, and Thirty-Six), the more mathematically inclined may want to 

reference the original source. See: Paul J. Cohen, Set Theory and the Continuum Hypothesis. New York: W.A. Benjamin 

(1966). For scientists and mathematicians, there is also Timothy Chow’s brief beginner’s guide to forcing. See: Timothy Y. 

Chow, “A beginner’s guide to forcing” in Communicating Mathematics. Contemp. Math, Vol. 479 (2009), pp. 25–40 (also, 

hosted by the author at http://math.mit.edu/~tchow/forcing.pdf) 

[EN 15] “A set δ is discernible for an inhabitant of S (the fundamental quasi-complete situation) if there exists an explicit 

property of the language of the situation which names it completely. In other words, an explicit formula λ(α) must exist, 

which is comprehensible for an inhabitant of S, such that ‘belong to δ’ and ‘have the property expressed by λ(α) coincide: 

α∈δ⟷ λ(α)” [Alain Badiou, Being and Event, 367]. 

[EN 16] A common political example Badiou likes to use is that of the proletarian under bourgeois rule. While the 

proletarian physically exist, they do not exist under the economic and political language dominated by the upper class. The 

proletarian therefore forms an “indiscernible” set of this economic-political situation, and they must revolt to “force” their 

universal egalitarian rights, testing their validity along the way. The same may be said of various civil rights movements. 

[EN 17] Again, due to space limitations, we have to make this study extremely brief. However, it should suffice to 

demonstrate our argument. I hope to perform a more thorough and rigorous study of this topic in the future.  

[EN 18] The most widely cited version of this postulate is John Playfair’s: “through a given point, only one parallel can be 

drawn to a given straight line” [Howard DeLong, A Profile of Mathematical Logic, 42]. This would give us a traditional 

linear Euclidian geometry-- two independent lines must be parallel.  

[EN 19] An intuitive way to think of the differences between each geometry is that while the sum of the angles of a triangle 

must always equal 180° in Euclidian geometry, they will be less than 180°  in Hyperbolic geometry, and  greater  than 180° 

in Elliptic geometry. 


