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Two Quotes 

 1) “If you want to know what really exists, 
take your best physical theory and look 
hard at the mathematics.” 

Tim Maudlin, August 27, 2011, ∼ 8:30 PM 

 2) “Yes, but first think hard about the 
mathematical tools you are using to 
represent the physical world.” 

Tim Maudlin, August 28, 2011, ∼  Noon 

 

 



Reality and Fundamentality 

When we ask whether something exists, there are 
three sorts of answers possible. 

 1) No, it does not exist at all. Examples: 
Leprechauns and Newtonian absolute velocities. 

 2) Yes, but it is not fundamental. Examples: pianos 
and protons. 

 3) Yes, and it is fundamental. Examples?: Strings 
(according to string theory) and space-time? 



Is Time Real?  

We can ask about the reality of  time. The most 
radical position is that time is not real (Barbour?).  

 Somewhat less: the space-time manifold is real 
(fundamental or not), but any distinction between 
time-like, space-like and light-like directions  in it is 
not real. (bare manifold) 

 Less still: the distinction is real but not fundamental. 
(time is real but emergent) 

 Finally: the distinction is real and fundamental. 



Is  the Direction of Time 
Real?  

 If we accept that time is real, we can also ask about the 
reality of  the direction of time. Einstein might seem to suggest 
the direction is not real at all: “For us faithful physicists, the 
separation between past, present and future has only the 
meaning of an illusion, although a persisting one.”  

 More usual: the direction is real but not fundamental. E.g., the 
direction “towards the future” is just the direction of increasing 
entropy. 

 But if “entropy always (or usually) increases” is not analytic, 
then either the direction is determined by something else, or 
the direction is fundamental. 



Time & Direction as 
Fundamental 

Newton’s view abut time was quite explicit: 

 “Absolute, true, and mathematical time, of itself, 
and from its own nature, flows equably without 
relation to anything external…” 

 For Newton, time is a collection of linearly ordered 
universal moments: “The moment of duration is the 
same at Rome and at London, on Earth and on the 
stars, and throughout all the heavens”. I will argue 
that if we change the relata to events, Newton’s 
view is vindicated by Relativity. 



Fundmentality in General 
Relativity 

 In classical GR, it is taken as fundamental at 
least that space-time has the topological 
structure of a four-dimensional manifold. 
(Adding extra dimensions still usually 
presupposes a manifold.) If one starts from 
here, even the distinction between space-
like and time-like directions must be secured 
by some other structure (e.g. a Lorentzian 
metric), which might be fundamental or non-
fundamental. 



Geometrical Structure 
A geometrical space can have different levels of 

structure, that form a hierarchy: metrical structure, 
affine structure, differentiable structure, topological 
structure. 

 The most basic of these is the topological structure. 

 I will argue that the traditional mathematical tool for 
describing topological structure has blinded us to 
how both time itself and the direction of time can be 
fundamental. A different tool opens up a new 
perspective. 



Topology 

 In order to organize a set of points into a space, 
some additional structure must be imposed on them. 

 The most fundamental such structure determines 
facts about continuity in the space, including the 
continuity of functions from one space to another. 
This is the topological structure. 

 This level of structure is defined without regard to 
either distance (metrical structure) or straightness 
(affine structure): hence the rubric rubber sheet 
geometry. 

 



Standard Topology 

 The basic notion in the usual formulations 
of topology is the open set. 

 Every other notion–closed set, connected 
space, continuous function, boundary, 
compactness, Hausdorff, etc.– is 
ultimately defined in terms of the open 
set structure. 



The Architecture of Topology 

Open set ⇔ Closed set ⇔ Neighborhoods 

Connected 
Space 

Continuous 
Function 

Boundary of 
a Set 

Curve (continuous function 
from real line into space) 

          Path                
(image of a curve) 



Informal Explication 

 “an open set is one in which every point has 
some breathing space” M. Crossley, Essential 
Topology 

 “In topology and related fields of mathematics, a 
set U is called open if, intuitively speaking, you 
can ‘wiggle’ or ‘change’ any point x in U by a 
small amount in any direction and still be inside U. 
In other words, x is surrounded only by elements 
of U; it can’t be on the edge of U.”–Wikipedia  

 



The Axioms 

 

Definition: A topological space is a set, X, 
together with a collection of subsets of X, 
called “open” sets, which satisfy the following 
rules: 

 T1. The set X itself is “open”. 
 T2. The empty set is “open”. 
 T3. Arbitrary unions of “open” sets are “open”. 
 T4. Finite intersections of “open” sets are 

“open”. 



Why Should This Work? 

 If this particular mathematical tool—the analysis of the 
continuity properties of a space in terms of its open set 
structure—is a direct way to describe physical space or 
space-time, then there should be some physical feature of 
the world that determines which sets of events are open 
sets. 

 It is not obvious what such a physical feature would be. We 
could, of course, postulate it as a primitive fact about sets 
of events—that some, but not others constitute open sets—
but that should be a last resort. 



Alternative Geometrical 
Primitive: the Line 

 Rather than the open set, there is a better 
fundamental notion upon which a theory of sub-
metrical geometry can be built: the line. 

More exactly, the “open” line, in the sense that 
both open and closed line segments are “open” 
and a circle is “closed”: from any point on the 
line one can move continuously to any other 
given point, but only by moving in one direction. 

An open line in this sense has a structure 
represented by a linear order among the points. 



Theory of Linear Structures 

lines 

neighborhoods 
≠ neighborhoods 

open sets initial-part 
open sets 

initial-part 
closed sets 

    (=) continuous 
functions 
≠ continuous 
functions connected space 

≠ connected space 



Linear Orders 

A linear order on a set S is a relation, which we 
will symbolize by “≥”, that satisfies three 
conditions: 

  For all p, q, r ∈ S 

 1) If p ≥ q and q ≥ p, then p = q (Antisymmetry) 

 2) If p ≥ q and q ≥ r, then p ≥ r (Transitivity) 

 3) p ≥ q or q ≥ p (Totality) 

 



Intervals 

An interval in set with a linear order is a 
subset of at least two points such that 
for any p, q in the subset, all points 
between p and q in the order are in the 
subset. (Dedekind) 



 Linear Structures (1st type) 

A Linear Structure is a set S together with Λ a 
set of subsets of S called the lines of S that 
satisfy: 

LS1 (Minimality Axiom): Each line contains 
at least two points. 

LS2 (Segment Axiom): Every line λ admits of 
a linear order among its points such that a 
subset of λ is itself a line if and only if it is an 
interval of that linear order. 

 



Linear Structures con’t 

 LS3 (Point-Splicing Axiom): If λ and µ are lines 
that have in common only a single point p that is 
an endpoint of both, then λ ∪ µ is a line provided 
that no lines in the set (λ ∪ µ) – p have a point in 
λ and a point in µ. 

 LS4 (Completion Axiom): Any linearly ordered 
set σ such that all and only the closed intervals in 
the order are closed lines is a line. 



Non-Uniqueness of Order 

According to this first set of axioms, every 
line can be represented by a linear order 
among its points. But evidently there are 
two such linear orders that will do the job, 
one the inverse of the other. Each will 
imply the same intervals, and so the same 
structure of segments. (A segment of a line λ is 
a subset of λ that is a line.) 



Lines on a Square Lattice 



Neighborhoods 

A set Σ is a neighborhood of a point 
p iff every line with p as an endpoint 
has a segment with p as an endpoint 
in Σ. 



Neighborhoods on a Square Lattice 



Open Sets 

A set Σ in a Linear Structure is an open set iff it 
is a neighborhood of all of its members. 

(NB: this definition looks identical to a definition 
that appears in standard topology, with 
neighborhood replaced by neighborhood. But in 
standard topology, a neighborhood of a point is a 
set containing an open set containing the point.) 



Theorem 

The collection of open sets in a 
Linear Structure satisfy the axioms 
of standard topology, i.e., the open 
sets are open sets. 



Some numbers 

# of points topologies Linear 
structures 

Topologies 
from LS 

     1         1        1        1 

     2         4        2        2 

     3       29        8        5 

     4      355       64       15 

     5     6,942      1,024       52 



This suggests…. 

Evidently many (in an obvious 
sense most) standard topologies 
on a finite point set cannot be 
generated from a Linear Structure 
on that set.  

 I call such topologies geometrically 
uninterpretable. 



For Example 

Consider a space with only 2 points, p 
and q. There are four standard 
topologies: 

 The discrete topology: {p, q}, {p}, {q}, ∅. 

 The indiscrete topology: {p, q}, ∅. 

 Two Sierpinski spaces: {p, q} , {p}, ∅ and 
{p, q}, {q}, ∅. 

 



Only 2 Linear Structures 

Discrete topology: open sets 

{p,q}, {p}, {q}, Ø 

p q 

p q 
Indiscrete topology: open sets 

{p,q}, Ø 



But… 

A little further thought shows this to be incorrect! We 
can understand all finite point topologies in terms of 
“wiggles”. 

 In the sort of Linear Structure we have constructed 
so far, we have treated the lines as two-way streets: 
if a small “wiggle” along a line can take you from p 
to q, then a small wiggle along the same line can 
take you from q to p. 



However… 

 Suppose we treat the lines as one-way streets: to 
specify a line one has to specify both a set of 
points that constitute it and a direction, i.e., only 
one linear order represents a line, not two. 

 The intuitive notion of a “small wiggle” is a 
continuous motion long a line in the direction of 
the line. 



Directed Linear Structures 

 This gives rise to the notion of a Directed Linear 
Structure. The axioms are modified in the obvious 
way: all and only the directed intervals in a linear 
order are segments of a line, etc. 

 The Splicing Axiom now requires that to splice two 
lines, the point p must be the final point of one 
and the initial point of the other. 



Outward Neighborhoods, 
Outward Open Sets 

A set Σ is an outward neighborhood of a point 
p iff every line with p as an initial endpoint 
has a segment with p as an initial endpoint in 
Σ. 
 A set Σ in a Linear Structure is an outward 
open set iff it is an outward neighborhood of 
all of its members. 

 

 



Directed LS for Two-Point Space 

p q 

p q 

p q 

p q 

Outward open sets 

{p,q}, {p}, {q}, Ø  

{p,q}, {q}, Ø  

{p,q}, {p}, Ø  

{p,q}, Ø  



More Numbers 

# of points topologies Directed LS Topologies 
from DLS 

     1         1        1        1 

     2         4        4        4 

     3       29       64        29 

     4      355     4,096       355 

     5     6,942  1,048,576      6,942 



Theorem 

Every finite-point topology is generated 
by some finite-point Directed Linear 
Structure. Typically, many distinct Linear 
Structures give rise to the same 
topology, so one loses geometrical 
information if one only knows the 
topology. 



Example 

These DLSs generate the same topology 
(viz. the indiscrete topology). 

p q 

r 

p q 

r 



Geometrically 
Uninterpretable Topologies 
There are, however, still geometrically 

uninterpretable topologies, topologies 
generated by no Directed Linear 
Structure. They all contain infinitely many 
points. 



The Geometry of a Part of a 
Space 

 In the Theory of Linear Structures, unlike 
standard topology, the geometry of a 
part of a space is defined in the natural 
way: by simple restriction. That is, the 
Linear Structure of a part of a space is 
given by the lines that are contained in 
that part. 



Space-Time: Why a 4-d 
Manifold is Unmotivated 

A topological 4-dimensional manifold has an 
open set structure that everywhere is locally 
isomorphic to a 4-d Euclidean space. From our 
point of view, the obvious reason to expect this 
would be because the Linear Structure of space-
time is locally isomorphic to the Linear Structure 
of 4-d Euclidean space. 



Lines in Euclidean Space 



Lines in Newtonian Space-
Time? 

time 



Lines in Relativistic Space-
Time? 



Wald on “Mixed” Lines 

  ”The length of curves which change from timelike to 
spacelike is not defined” (General Relativity, p. 44). 

 So let’s eliminate those curves: the Linear Structure of 
a Relativistic space-time is not the same as that of 
any Euclidean space. 



Physics 

 If the fundamental sub-metrical geometrical 
structure is the line, then when we turn to 
physics, we should ask: what physical feature 
of the universe could generate physical lines?  

More generally, what physical feature of the 
universe naturally generates a linear order 
among the points of space-time? 



Time 

 Intuitively, time provides a directed linear 
ordering of events. It is the natural place to 
look for a source of physical lines. 

 



Newtonian and Neo-
Newtonian Space-Time 

 In Newtonian or Neo-Newtonian space-time, if 
one asks for a maximal set of events which is 
linearly ordered in time, one gets a set of 
points, one at each instant of time. This set of 
points will not typically look like any sort of line: 



Newtonian Space-Time 

time 



Relativistic Space-Time  
(Globally Hyperbolic) 

 In a Relativistic space-time (Lorentzian 
pseudo-metric) with no closed time-like 
curves (no “time travel”), if one asks for a 
maximal set of events which is linearly 
ordered in time, what one gets is a 
continuous time-like or null curve. 

 The light-cone structure forces such a set 
to intuitively form a line. 



Relativistic Space-Time 



From Sean Carroll’s Book 

  



Only Trivial Geometry on a 
Spacelike Hypersurface 

 If we only admit timelike-or-null lines, then 
when we restrict the geometry to a space-like 
hypersurface we get no lines at all: there is no 
intrinsic spatial geometry. 

Other slices, though, have the expected 
Relativistic structure. 



Linear Structure of Hyperplanes 



Relativistic Structure is Built 
Into the Linear Structure 

 If we follow this recipe, the light-cone 
structure of a space-time is already definable 
from its Linear Structure, without use of any 
metrical notions. 

 In particular, a closed line with endpoints p and 
q is a straight lightlike line just in case it is the 
only closed line with these endpoints. So one 
can recover the light-cone structure directly 
from the Directed Linear Structure. 



Recovering the Whole 
Relativistic Metric 

 To get the full Relativistic (pseudo-
)metric, one needs to attribute a 
“length” to these lines, i.e. the proper 
time along them. This is enough to 
determine all the spatio-temporal 
structure postulated by Relativity. 



How the Mathematics 
Describes Physics 

 If we use the Theory of Linear Structures to characterize 
the geometry of a space, then the topology is 
determined by the directed lines—linearly ordered sets of 
points—in the space. 

 If we accept that time linearly orders events, then the 
maximal sets of temporally ordered events form a 
natural physical directed linear structure in space-time. 

 In Relativity—but not classical physics—this turns out to 
be just the geometrical structure the physics need. Time 
invests space-time with this geometrical structure. 
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