If you have an idea for a blog post or a new forum thread, then please contact us at forums@fqxi.org, with a summary of the topic and its source (e.g., an academic paper, conference talk, external blog post or news item).

Contests Home

Previous Contests

**Trick or Truth: the Mysterious Connection Between Physics and Mathematics**

*Contest Partners: Nanotronics Imaging, The Peter and Patricia Gruber Foundation, and The John Templeton Foundation*

Media Partner: Scientific American

read/discuss • winners

**How Should Humanity Steer the Future?**

*January 9, 2014 - August 31, 2014*

*Contest Partners: Jaan Tallinn, The Peter and Patricia Gruber Foundation, The John Templeton Foundation, and Scientific American*

read/discuss • winners

**It From Bit or Bit From It**

*March 25 - June 28, 2013*

*Contest Partners: The Gruber Foundation, J. Templeton Foundation, and Scientific American*

read/discuss • winners

**Questioning the Foundations**

Which of Our Basic Physical Assumptions Are Wrong?

*May 24 - August 31, 2012*

*Contest Partners: The Peter and Patricia Gruber Foundation, SubMeta, and Scientific American*

read/discuss • winners

**Is Reality Digital or Analog?**

*November 2010 - February 2011*

*Contest Partners: The Peter and Patricia Gruber Foundation and Scientific American*

read/discuss • winners

**What's Ultimately Possible in Physics?**

*May - October 2009*

*Contest Partners: Astrid and Bruce McWilliams*

read/discuss • winners

**The Nature of Time**

*August - December 2008*

read/discuss • winners

Previous Contests

Media Partner: Scientific American

read/discuss • winners

read/discuss • winners

read/discuss • winners

Which of Our Basic Physical Assumptions Are Wrong?

read/discuss • winners

read/discuss • winners

read/discuss • winners

read/discuss • winners

Forum Home

Introduction

Terms of Use

RSS feed | RSS help

Introduction

Terms of Use

*Posts by the author are highlighted in orange; posts by FQXi Members are highlighted in blue.*

RSS feed | RSS help

RECENT POSTS IN THIS TOPIC

**Sridattadev**: *on* 8/2/11 at 13:35pm UTC, wrote Dear Ken, I would like to introduce myself in quantum terminology and...

**Donatello Dolce**: *on* 3/24/11 at 2:26am UTC, wrote Dear Ken, thank you for the citation added (even though the long delay)...

**Donatello Dolce**: *on* 3/24/11 at 2:17am UTC, wrote Dear Ken,

**Alan Lowey**: *on* 3/19/11 at 11:11am UTC, wrote Dear Ken, Congratulations on your dedication to the competition and your...

**Ken Wharton**: *on* 3/15/11 at 1:57am UTC, wrote Thanks, everyone, for the nice comments... I apologize for not finding...

**Dan T Benedict**: *on* 3/14/11 at 23:32pm UTC, wrote Dear Ken, Thanks, for your response. You have given me some food for...

**T H Ray**: *on* 3/14/11 at 12:09pm UTC, wrote Ken, I'm glad you clarified this point. I didn't have a problem...

**Ken Wharton**: *on* 3/14/11 at 3:54am UTC, wrote Hi Dan, Thanks for your comments... You certainly make a fair point --...

RECENT FORUM POSTS

**Domenico Oricchio**: "A new era in astronomy. I imagine dozens of observers to triangulate..."
*in* LIGO to Make a...

**Lorraine Ford**: "Rob, you are not talking about REAL information, you are talking about..."
*in* Measuring Consciousness...

**Lorraine Ford**: "That was me."
*in* Measuring Consciousness...

**Lorraine Ford**: "Eckard, Re "I apologize for possibly hurting believers when I used the..."
*in* How risky is too risky?...

**Lorraine Ford**: "I agree with Rob."
*in* How risky is too risky?...

**Zeeya Merali**: "That's a good idea Steve. I've never thought about LinkedIn and FQXi, but..."
*in* LIGO to Make a...

**Nicholas I Hosein**: "In the past couple months I've witnessed God a number of times. He is the..."
*in* The Quantum Reality...

RECENT ARTICLES

*click titles to read articles*

**The Quantum Reality Paradox**

How the search for God’s limits led to the discovery of quantum contextuality—a weird phenomenon that could provide the 'magic' needed for super-fast computing.

**Quantum Cybernetics**

The quest for a meta-theory of quantum control that could one day explain physical systems, certain biological phenomena—and maybe even politics.

**Video Article: Solar-System-Sized Experiment to Put Time to the Test**

Is quantum theory or relativity right about the nature of time? Bouncing radar beams off the moons of Jupiter just might help sort things out.

**Conjuring a Neutron Star from a Nanowire**

Using tiny mechanical devices to create accelerations equivalent to 100 million times the Earth’s gravitational field—mimicking the arena of quantum gravity in the lab.

**Inferring the Limits on Reality (that Even the Gods Must Obey)**

The fuzziness of the quantum realm could arise from mathematical restrictions on what can ever be known.

RECENT FORUM POSTS

RECENT ARTICLES

How the search for God’s limits led to the discovery of quantum contextuality—a weird phenomenon that could provide the 'magic' needed for super-fast computing.

The quest for a meta-theory of quantum control that could one day explain physical systems, certain biological phenomena—and maybe even politics.

Is quantum theory or relativity right about the nature of time? Bouncing radar beams off the moons of Jupiter just might help sort things out.

Using tiny mechanical devices to create accelerations equivalent to 100 million times the Earth’s gravitational field—mimicking the arena of quantum gravity in the lab.

The fuzziness of the quantum realm could arise from mathematical restrictions on what can ever be known.

FQXi FORUM

February 12, 2016

CATEGORY:
FQXi Essay Contest - Is Reality Digital or Analog?
[back]

TOPIC: Quantum Theory without Quantization by Ken Wharton [refresh]

TOPIC: Quantum Theory without Quantization by Ken Wharton [refresh]

The only evidence we have for a discrete reality comes from quantum measurements; without invoking these measurements, quantum theory describes continuous entities. This seeming contradiction can be resolved via analysis that treats measurements as boundary constraints. It is well-known that boundaries can induce apparently-discrete behavior in continuous systems, and strong analogies can be drawn to the case of quantum measurement. If quantum discreteness arises in this manner, this would not only indicate an analog reality, but would also offer a solution to the so-called "measurement problem".

Ken Wharton is an Associate Professor in the Department of Physics and Astronomy at San Jose State University. His research is focused on the foundations of quantum theory, with a particular interest in fully time-symmetric approaches.

Hello Ken,

I am very intrigued by your essay! You may be equally intrigued by my essay “A World Without Quanta?” submitted and posted in this FQXi contest!!! In my essay I provide (among many other connections) a simple continuous derivation of Planck's Law without using energy quanta. I show that this Law is really a mathematical identity that describes the 'interaction of measurement' (and more generally 'energy exchange'). I also provide an explanation for our observations of 'energy quanta' which goes well along your ideas of how discreteness arises out of an underlying continuity when measurement takes place.

This is very encouraging! I have been a 'voice in the wilderness' for a number of years now and it is good to know someone else has similar ideas. I should include in this short list Hayrani Oz (professor of aerospace engineering at Ohio State University). He too has been using very successfully 'time-integrals of energy' (my quantity 'eta') for many years. We are coauthoring a chapter on a Thermodynamics book coming out latter this spring based on our results. Also, I should give great credit for FQXi that has provided me the space and opportunity to engage others in good meaningful discussion and not be shouted down and blocked from participating.

Best regards,

Constantinos

report post as inappropriate

I am very intrigued by your essay! You may be equally intrigued by my essay “A World Without Quanta?” submitted and posted in this FQXi contest!!! In my essay I provide (among many other connections) a simple continuous derivation of Planck's Law without using energy quanta. I show that this Law is really a mathematical identity that describes the 'interaction of measurement' (and more generally 'energy exchange'). I also provide an explanation for our observations of 'energy quanta' which goes well along your ideas of how discreteness arises out of an underlying continuity when measurement takes place.

This is very encouraging! I have been a 'voice in the wilderness' for a number of years now and it is good to know someone else has similar ideas. I should include in this short list Hayrani Oz (professor of aerospace engineering at Ohio State University). He too has been using very successfully 'time-integrals of energy' (my quantity 'eta') for many years. We are coauthoring a chapter on a Thermodynamics book coming out latter this spring based on our results. Also, I should give great credit for FQXi that has provided me the space and opportunity to engage others in good meaningful discussion and not be shouted down and blocked from participating.

Best regards,

Constantinos

report post as inappropriate

Dr. Wharton,

Some very interesting ideas, though I would have a few quibbles.

For one thing, the essay question is: Is reality digital, or analog. Not is the foundation of reality digital or analog. If it were the latter then the premise of your argument would be correct, the foundation of reality is analog, but it is this emergent digitalization which forms reality as we perceive...

view entire post

Some very interesting ideas, though I would have a few quibbles.

For one thing, the essay question is: Is reality digital, or analog. Not is the foundation of reality digital or analog. If it were the latter then the premise of your argument would be correct, the foundation of reality is analog, but it is this emergent digitalization which forms reality as we perceive...

view entire post

report post as inappropriate

John -- Thanks for the "quibbles", but I guess we just have a different take on where our human perceptions intersect with both the physics (the time issues you mentioned) and the purpose of the essay question itself. So I'll just leave you with a nice quote...

"Our present QM formalism is a peculiar mixture describing in part laws of Nature, in part incomplete human information about Nature -- all scrambled up together by Bohr into an omelette that nobody has seen how to unscramble. Yet we think the unscrambling is a prerequisite for any further advance in basic physical theory..." Edwin T. Jaynes

"Our present QM formalism is a peculiar mixture describing in part laws of Nature, in part incomplete human information about Nature -- all scrambled up together by Bohr into an omelette that nobody has seen how to unscramble. Yet we think the unscrambling is a prerequisite for any further advance in basic physical theory..." Edwin T. Jaynes

II. BOUNDARY-INDUCED QUANTIZATION

I call this temporary quantization. When nature puts the squeeze on degrees of freedom, you get a quantum number and have quantization of energy levels. When WE do put constraint on freedom of particles, we too cause quantization = observation related!

A free photon has free direction. If we squeeze the photon true a slit, direction is constrained and now, direction is a temporary quantum number and direction is quantized i.e. interference .

Marcel,

report post as inappropriate

I call this temporary quantization. When nature puts the squeeze on degrees of freedom, you get a quantum number and have quantization of energy levels. When WE do put constraint on freedom of particles, we too cause quantization = observation related!

A free photon has free direction. If we squeeze the photon true a slit, direction is constrained and now, direction is a temporary quantum number and direction is quantized i.e. interference .

Marcel,

report post as inappropriate

Hi Marcel,

Although I'm obviously in general agreement with your overall point, I'll recommend possibly changing your terminology into something that's more neutral when it comes to the difference between spatial and temporal boundary constraints. Maybe "Local quantization"? (Although the word "local" comes with a lot of unfortunate baggage...) "Regional quantization"?

Although I'm obviously in general agreement with your overall point, I'll recommend possibly changing your terminology into something that's more neutral when it comes to the difference between spatial and temporal boundary constraints. Maybe "Local quantization"? (Although the word "local" comes with a lot of unfortunate baggage...) "Regional quantization"?

Hello Ken,

Knowing that the ideas in your essay will interest Hayrani Oz (Prof. Of Aerospace Engineering, Ohio State University) I took the liberty of forwarding him your essay. His reply was lengthy so I made a pdf and am attaching it here. Your ideas and Hayrani's 'Enerxaction Dynamics' appear to match well. I hesitate to include Hayrani's email in this open forum, so if you have a follow up reply I can likewise forward it to him.

Best wishes,

Constantinos

attachments: Oz_on_Wharton_response.pdf

report post as inappropriate

Knowing that the ideas in your essay will interest Hayrani Oz (Prof. Of Aerospace Engineering, Ohio State University) I took the liberty of forwarding him your essay. His reply was lengthy so I made a pdf and am attaching it here. Your ideas and Hayrani's 'Enerxaction Dynamics' appear to match well. I hesitate to include Hayrani's email in this open forum, so if you have a follow up reply I can likewise forward it to him.

Best wishes,

Constantinos

attachments: Oz_on_Wharton_response.pdf

report post as inappropriate

Constantinos,

Thank you for your interest, and for forwarding Hayrani's comments... I'll follow up via email.

Ken

Thank you for your interest, and for forwarding Hayrani's comments... I'll follow up via email.

Ken

Hey Ken,

Nice essay. Actually, I'm finding your time-symmetric stuff more and more intriguing as time goes by. It's interesting to note that your broader conclusion is essentially the same as both mine and Dean Rickles' (and a few others that I've read so far).

Hope all is well with you! I nominated you for membership in FQXi, by the way.

Ian

report post as inappropriate

Nice essay. Actually, I'm finding your time-symmetric stuff more and more intriguing as time goes by. It's interesting to note that your broader conclusion is essentially the same as both mine and Dean Rickles' (and a few others that I've read so far).

Hope all is well with you! I nominated you for membership in FQXi, by the way.

Ian

report post as inappropriate

Hi Ian - thanks for the nomination!

Although you're right that we have a big point of agreement (that real-life measurements are never going to be able to answer this question one way or the other) I wouldn't characterize that point as my "broader conclusion"... More of a preliminary point that I quickly got out of the way. Your essay certainly tackles that question in a much broader and comprehensive manner.

In that sense, my essay is sort of a sequel to yours -- after all, near the end of your essay you say: "So perhaps the more enlightening question would be, are all "quantum" theories necessarily discrete?" You said your instincts were on the "yes" side of this question... Any chance my essay has swayed your opinion on this issue? :-)

When I get a chance I'll head over to your own topic and post some questions of my own... Cheers!

Although you're right that we have a big point of agreement (that real-life measurements are never going to be able to answer this question one way or the other) I wouldn't characterize that point as my "broader conclusion"... More of a preliminary point that I quickly got out of the way. Your essay certainly tackles that question in a much broader and comprehensive manner.

In that sense, my essay is sort of a sequel to yours -- after all, near the end of your essay you say: "So perhaps the more enlightening question would be, are all "quantum" theories necessarily discrete?" You said your instincts were on the "yes" side of this question... Any chance my essay has swayed your opinion on this issue? :-)

When I get a chance I'll head over to your own topic and post some questions of my own... Cheers!

Ken,

Hmmm. I don't know if you have swayed me on this, but I will say that I have a much better understanding of the block universe concept now. I still think it is discrete on some level, but I think I'm thinking of discreteness in a slightly different way. So, kind of like the reverse of the usual way of thinking, imagine that everything is locally continuous (which I don't necessarily think it is, but let's just suppose for the sake of argument it is). How could you tell if your little local part of the universe wasn't just some discrete point in a much larger system? Or, for that matter, what if our universe is a discrete point in some strange system of multiple universes? Wacky stuff, but hopefully it illustrates the way in which I envisage "discrete" here.

Ian

report post as inappropriate

Hmmm. I don't know if you have swayed me on this, but I will say that I have a much better understanding of the block universe concept now. I still think it is discrete on some level, but I think I'm thinking of discreteness in a slightly different way. So, kind of like the reverse of the usual way of thinking, imagine that everything is locally continuous (which I don't necessarily think it is, but let's just suppose for the sake of argument it is). How could you tell if your little local part of the universe wasn't just some discrete point in a much larger system? Or, for that matter, what if our universe is a discrete point in some strange system of multiple universes? Wacky stuff, but hopefully it illustrates the way in which I envisage "discrete" here.

Ian

report post as inappropriate

Ian -- Yes, of course you're right that there's no way to prove there's not a discrete substructure, and even if one was found, it would still be possible that there was a continuous sub-substructure under that! (etc., etc.)

But my point is that if you take QM measurements away, there's no *evidence* that anything is discrete. And if those same discrete measurements can be explained as an emergent feature of a continuous system, as I'm proposing, then there's no evidence for anything fundamentally discrete at all.

Sure, it still may turn out to be that way, but one shouldn't just instinctively point to QM as evidence that reality is discrete, especially given the measurement problem.

report post as inappropriate

But my point is that if you take QM measurements away, there's no *evidence* that anything is discrete. And if those same discrete measurements can be explained as an emergent feature of a continuous system, as I'm proposing, then there's no evidence for anything fundamentally discrete at all.

Sure, it still may turn out to be that way, but one shouldn't just instinctively point to QM as evidence that reality is discrete, especially given the measurement problem.

report post as inappropriate

I liked your essay. I think that your boundary induced quantization is similar to a path integration condition. Certainly with respect to past and future this seems to be the case. The individual paths will constructively and destructively interfere with each other so as to match the endpoint (BC) conditions.

There is a bit of a point which I am pondering. The big bang as a boundary for quantization makes sense if the spacetime is classical or continuous at the start. Otherwise, you BIQ is approximate. If spacetime in the very early universe has quantum fluctuations, or is quantized, then I am less certain on how one can apply that as a boundary. If on the other hand spacetime may be fundamentally classical, where quantum gravity only refers to some other field from which spacetime emerges, then this theory should be more exact. Even still I am not sure how one would treat the quantum field spacetime emerges from.

Cheers LC

report post as inappropriate

There is a bit of a point which I am pondering. The big bang as a boundary for quantization makes sense if the spacetime is classical or continuous at the start. Otherwise, you BIQ is approximate. If spacetime in the very early universe has quantum fluctuations, or is quantized, then I am less certain on how one can apply that as a boundary. If on the other hand spacetime may be fundamentally classical, where quantum gravity only refers to some other field from which spacetime emerges, then this theory should be more exact. Even still I am not sure how one would treat the quantum field spacetime emerges from.

Cheers LC

report post as inappropriate

Thanks for the kind comments... I was waiting to reply until my latest paper (relevant to your first comment) was up on the arXiv, but it now looks like it's going to be another week, so I'll post the link later.

As far as the point that you're pondering... Just because something is "classical", does not mean that it must emerge from some deeper quantum level. One can look for quantum phenomena to emerge from a classical foundation, rather than the other way around -- the central point of my essay, really. Still, I think it's important to take a sufficiently broad view of a "classical foundation" -- say, a local Lagrangian field density on a classical spacetime manifold. From that unproblematic starting point one can study various "nonclassical" rules and constraints, and see how they might lead to higher-level quantum behavior.

Best, Ken

As far as the point that you're pondering... Just because something is "classical", does not mean that it must emerge from some deeper quantum level. One can look for quantum phenomena to emerge from a classical foundation, rather than the other way around -- the central point of my essay, really. Still, I think it's important to take a sufficiently broad view of a "classical foundation" -- say, a local Lagrangian field density on a classical spacetime manifold. From that unproblematic starting point one can study various "nonclassical" rules and constraints, and see how they might lead to higher-level quantum behavior.

Best, Ken

Hi Ken,

good to see you and congratulations for this lucid essay. You have a deep understanding of the quantum and the ability to explain it so well. And I don't say this just because I agree so much with what you wrote :) [paper, video]. I would like just to comment that the system is quantized, with or without the boundary conditions. What these conditions can bring in is the discretization of the spectra, as you explained so well.

Best regards,

Cristi Stoica, Infinite Resolution (this year I focused on singularities in GR)

report post as inappropriate

report post as inappropriate

good to see you and congratulations for this lucid essay. You have a deep understanding of the quantum and the ability to explain it so well. And I don't say this just because I agree so much with what you wrote :) [paper, video]. I would like just to comment that the system is quantized, with or without the boundary conditions. What these conditions can bring in is the discretization of the spectra, as you explained so well.

Best regards,

Cristi Stoica, Infinite Resolution (this year I focused on singularities in GR)

report post as inappropriate

Hi Christi,

Thanks!

But I'm confused: what do you mean by "the system is quantized"? Clearly not the discrete outcomes... What features of a generic system determine whether it is "quantized", if not any discretization? (Deep question there, I know, but you seem to have something particular in mind...)

Cheers,

Ken

Thanks!

But I'm confused: what do you mean by "the system is quantized"? Clearly not the discrete outcomes... What features of a generic system determine whether it is "quantized", if not any discretization? (Deep question there, I know, but you seem to have something particular in mind...)

Cheers,

Ken

Hi Ken,

I did not intend to be cryptic, I just wanted to be concise :). Thanks for the feedback, indeed I need to detail. If I understand well, you start with an equation describing a quantum system (e.g. Schrödinger, Klein-Gordon or Dirac). Then exhibit in the system described by that equation discrete behavior from appropriate boundary conditions. I think you did right. I think that the...

view entire post

I did not intend to be cryptic, I just wanted to be concise :). Thanks for the feedback, indeed I need to detail. If I understand well, you start with an equation describing a quantum system (e.g. Schrödinger, Klein-Gordon or Dirac). Then exhibit in the system described by that equation discrete behavior from appropriate boundary conditions. I think you did right. I think that the...

view entire post

report post as inappropriate

Hi Cristi,

Ah -- I now see where you are coming from, but I disagree with the "out" that you've provided me. I do not think physicists should simply "start" with operator-valued equations and explain classical physics as some limit of those equations. Especially given that there is another approach.

It turns out that the Klein-Gordon equation *is* the classical equation for a classical scalar field. There's also a classical Dirac field (see the last chapter in Goldstein on classical fields.) There's nothing "quantum" about these equations until you start interpreting them via operators as you describe. Yes, if you start with particles you have a problem, but recall my premise is that everything is continuous, so one is forced to start with classical fields anyway.

So why do we then go to operators? It's the easiest way to get to a framework that can predict discrete outcomes. But if there is some other way to get a near-discreteness without operators -- as argued in my essay -- then there would never be any reason to do your "step #1" in the first place.

Now, after several years spent hoping that one could get all of quantum theory by applying closed-hypersurface boundary conditions to classical field equations, I've finally come to terms with the fact that this alone isn't going to work. But I'm far from giving up on the classical field framework itself. (I've just dropped back from field equations to the classical Lagrangian densities that generate those equations in some -- perhaps approximate -- limit.) After all, if you "start" from an equation that one can't even interpret, none of the consequences are going to be interpretable, either.

Best,

Ken

report post as inappropriate

Ah -- I now see where you are coming from, but I disagree with the "out" that you've provided me. I do not think physicists should simply "start" with operator-valued equations and explain classical physics as some limit of those equations. Especially given that there is another approach.

It turns out that the Klein-Gordon equation *is* the classical equation for a classical scalar field. There's also a classical Dirac field (see the last chapter in Goldstein on classical fields.) There's nothing "quantum" about these equations until you start interpreting them via operators as you describe. Yes, if you start with particles you have a problem, but recall my premise is that everything is continuous, so one is forced to start with classical fields anyway.

So why do we then go to operators? It's the easiest way to get to a framework that can predict discrete outcomes. But if there is some other way to get a near-discreteness without operators -- as argued in my essay -- then there would never be any reason to do your "step #1" in the first place.

Now, after several years spent hoping that one could get all of quantum theory by applying closed-hypersurface boundary conditions to classical field equations, I've finally come to terms with the fact that this alone isn't going to work. But I'm far from giving up on the classical field framework itself. (I've just dropped back from field equations to the classical Lagrangian densities that generate those equations in some -- perhaps approximate -- limit.) After all, if you "start" from an equation that one can't even interpret, none of the consequences are going to be interpretable, either.

Best,

Ken

report post as inappropriate

Dear Ken

That was the most clearly written and beautifully insightful essay I've read. It also gave me many new answers, viewpoints and much confidence on my own model of discrete fields.(DFM) I've also learned a lot from your refined explanations. You certainly have a 10 from me, but what I'd like from you to read my own logic based but rather agricultural local reality iteration of.. ..well really of what you seem to be suggesting may be true. (which shows limits to Bells domain). http://fqxi.org/community/forum/topic/803

I've been struggling with it as I can't seem to falsify or find the errors in how the DFM seems to fully unify SR/GR and QT. It uses a real quantum symmetry breaking boundary transition process implementing energy changes in an underlying field structure. It also made my hairs stand on end what you referred to the ultimate boundary of the big bang, as I recently posted a short pre-print paper reaching a logical and very physical solution to how exactly that.... anyway the paper, which only took 2hrs to write as a part derivative of a full one under consideration, is at; http://vixra.org/abs/1102.0016 I would really appreciate you reading both, and advising me precisely where the errors are as unfortunately no-one has found them yet.

There are a number of other papers looking at implications, which are quite extraordinary, seeming to resolve issues right across physics. It seems to suggest our failure has been one of complex logical thought involving visualisation skills with multiple variables, and over reliance on mathematical abstraction.

I'll say no more for now, but just thank you, for your essay, and in advance for your time and hopefully comments.

Best wishes

Peter

report post as inappropriate

That was the most clearly written and beautifully insightful essay I've read. It also gave me many new answers, viewpoints and much confidence on my own model of discrete fields.(DFM) I've also learned a lot from your refined explanations. You certainly have a 10 from me, but what I'd like from you to read my own logic based but rather agricultural local reality iteration of.. ..well really of what you seem to be suggesting may be true. (which shows limits to Bells domain). http://fqxi.org/community/forum/topic/803

I've been struggling with it as I can't seem to falsify or find the errors in how the DFM seems to fully unify SR/GR and QT. It uses a real quantum symmetry breaking boundary transition process implementing energy changes in an underlying field structure. It also made my hairs stand on end what you referred to the ultimate boundary of the big bang, as I recently posted a short pre-print paper reaching a logical and very physical solution to how exactly that.... anyway the paper, which only took 2hrs to write as a part derivative of a full one under consideration, is at; http://vixra.org/abs/1102.0016 I would really appreciate you reading both, and advising me precisely where the errors are as unfortunately no-one has found them yet.

There are a number of other papers looking at implications, which are quite extraordinary, seeming to resolve issues right across physics. It seems to suggest our failure has been one of complex logical thought involving visualisation skills with multiple variables, and over reliance on mathematical abstraction.

I'll say no more for now, but just thank you, for your essay, and in advance for your time and hopefully comments.

Best wishes

Peter

report post as inappropriate

Hi Peter,

Thanks for the kind words -- but I'm afraid I don't really see any connections between our two essays. Still, I'm glad my essay gave you some useful ideas.

My only comment on your essay would be that I think you would find it beneficial to treat light as a wave, especially when it comes to analyzing light in a moving dielectric or plasma. The distinction between phase velocity and group velocity is particularly crucial to your analysis (the phase velocity in a plasma is actually c*n, not c/n, for example.)

Ken

report post as inappropriate

Thanks for the kind words -- but I'm afraid I don't really see any connections between our two essays. Still, I'm glad my essay gave you some useful ideas.

My only comment on your essay would be that I think you would find it beneficial to treat light as a wave, especially when it comes to analyzing light in a moving dielectric or plasma. The distinction between phase velocity and group velocity is particularly crucial to your analysis (the phase velocity in a plasma is actually c*n, not c/n, for example.)

Ken

report post as inappropriate

Ken

Many thanks. I agree with the wave treatment. You'll have noticed I consistently referred to signal not phase velocity to avoid confusion. I've studied and researched optics for many years and there is still poor understanding, within but particularly outside optics. Optic Fibre and plasmon science has helped, but, well just look at; Nano letters DOI;10.1021/nl103408h. and Science, vol331,p892. to see how poor the science of just a few years ago was.

I wrote a paper clarifying much re; superposition, harmonics, plasma and refraction, but to the specialist editors it's not 'new discovery' just a clearer way of explaining what we've already discovered, and to general journals it's too far from the ruling paradigms to be considered! We have to smile!! I've now been asked to agre to publication is a less mainstream journal. What does one do!?

I could have written a whole essay on the wave aspects, but omitted it all to avoid red herrings as it is the overview that's important.

I'm not sure if you saw the fundamental derivation from correctly treating time averaged Poynting vectors in co-moving ion media or missed it. It did require slow reading, difficult multi variable visualisation, and consideration of the consequences. Essentially it derives from pure logic SR and GR with a preferred 3rd frame and quantum mechanism, and it's falsifiable.

Or perhaps you disagreed with the logic for some reason? Please do advise if you can find the time. (Don't get confused by plasma waves as we're dealing only with the block reference frame of the medium).

Best wishes

report post as inappropriate

Many thanks. I agree with the wave treatment. You'll have noticed I consistently referred to signal not phase velocity to avoid confusion. I've studied and researched optics for many years and there is still poor understanding, within but particularly outside optics. Optic Fibre and plasmon science has helped, but, well just look at; Nano letters DOI;10.1021/nl103408h. and Science, vol331,p892. to see how poor the science of just a few years ago was.

I wrote a paper clarifying much re; superposition, harmonics, plasma and refraction, but to the specialist editors it's not 'new discovery' just a clearer way of explaining what we've already discovered, and to general journals it's too far from the ruling paradigms to be considered! We have to smile!! I've now been asked to agre to publication is a less mainstream journal. What does one do!?

I could have written a whole essay on the wave aspects, but omitted it all to avoid red herrings as it is the overview that's important.

I'm not sure if you saw the fundamental derivation from correctly treating time averaged Poynting vectors in co-moving ion media or missed it. It did require slow reading, difficult multi variable visualisation, and consideration of the consequences. Essentially it derives from pure logic SR and GR with a preferred 3rd frame and quantum mechanism, and it's falsifiable.

Or perhaps you disagreed with the logic for some reason? Please do advise if you can find the time. (Don't get confused by plasma waves as we're dealing only with the block reference frame of the medium).

Best wishes

report post as inappropriate

Hi Ken,

I think my response to your email is more appropriately posted here, since others may benefit by our discussion.

You write,

“ I'm quite interested in new ideas of how to get quantum behavior to emerge from classical fields”.

This was also what attracted my attention to your essay, as this is exactly what I am doing in my essay. What I mathematically...

view entire post

I think my response to your email is more appropriately posted here, since others may benefit by our discussion.

You write,

“ I'm quite interested in new ideas of how to get quantum behavior to emerge from classical fields”.

This was also what attracted my attention to your essay, as this is exactly what I am doing in my essay. What I mathematically...

view entire post

report post as inappropriate

Ken

I was interested in your comments to Constantinos. You seem to be saying he may be wrong ref the delay. In fibre optics the delay is established with great accuracy as polarisation mode dispersal (PMD) delay, somewhat frequency and polarity dependent (birefringence) but fully consistent with that Constantinos derives. This is the 'charging' or 'momentum' delay of scattering.

Also consistent with this and of topical interest are the latest results reported in Science vol 331,p892, and p 16 of 26th Feb NS, where particles were charged and 'bounced off', or were re-emitted by, the fine structure ABOVE the surface of matter, (done here with coated glass). This is equivalent to reflective scattering. The 19th Feb NS (p18) showing plasmons 'grabbing photons' through a nano hole and re-emitting them, when an 'empty' hole won't let then through at all! All equivalent to QED, with electrons 're-emitting' photons, and always at the relative 'c' of the electrons if in a refractive medium co-moving wrt an incident medium. And we find the greater the relative motion the higher the 'fine structure' surface plasma or 'plasmasphere'. Is that purely a co-incidence? The discrete field model (DFM) explores the implications if not. It's consistent with Constantinos and Edwins, and we haven't been able to falsify it yet.

You ask about "how to get quantum behavior to emerge from classical fields". It it worth considering the converse; How to get classic relativity to emerge from quantum behaviour. With refractive dispersion this seems to emerge naturally.

Food for thought?

Best wishes

Peter

report post as inappropriate

I was interested in your comments to Constantinos. You seem to be saying he may be wrong ref the delay. In fibre optics the delay is established with great accuracy as polarisation mode dispersal (PMD) delay, somewhat frequency and polarity dependent (birefringence) but fully consistent with that Constantinos derives. This is the 'charging' or 'momentum' delay of scattering.

Also consistent with this and of topical interest are the latest results reported in Science vol 331,p892, and p 16 of 26th Feb NS, where particles were charged and 'bounced off', or were re-emitted by, the fine structure ABOVE the surface of matter, (done here with coated glass). This is equivalent to reflective scattering. The 19th Feb NS (p18) showing plasmons 'grabbing photons' through a nano hole and re-emitting them, when an 'empty' hole won't let then through at all! All equivalent to QED, with electrons 're-emitting' photons, and always at the relative 'c' of the electrons if in a refractive medium co-moving wrt an incident medium. And we find the greater the relative motion the higher the 'fine structure' surface plasma or 'plasmasphere'. Is that purely a co-incidence? The discrete field model (DFM) explores the implications if not. It's consistent with Constantinos and Edwins, and we haven't been able to falsify it yet.

You ask about "how to get quantum behavior to emerge from classical fields". It it worth considering the converse; How to get classic relativity to emerge from quantum behaviour. With refractive dispersion this seems to emerge naturally.

Food for thought?

Best wishes

Peter

report post as inappropriate

Peter,

Thanks for all the experimental facts you brought to my defense! I had no idea there is so much evidence for such 'time delay'. I think Eckard Blumschein would also add to this list the Gompf et al. false measurements of single photon counting. Rethinking this issue over again, I would like to add to this supportive arguments and experimental evidence the Heisenberg Uncertainty Principle. Clearly, QM uncertainty results in some positive duration of time for an amount of energy 'delta E' to manifest.

I think the rejection to my proof that Planck's Law is a mathematical tautology that describes the interaction of measurement is more 'disbelief' than 'refutation'. It cuts so deeply into the grain and fibre of modern physical thinking. It's just hard for physicists to accept.

Best regards,

Constantinos

report post as inappropriate

Thanks for all the experimental facts you brought to my defense! I had no idea there is so much evidence for such 'time delay'. I think Eckard Blumschein would also add to this list the Gompf et al. false measurements of single photon counting. Rethinking this issue over again, I would like to add to this supportive arguments and experimental evidence the Heisenberg Uncertainty Principle. Clearly, QM uncertainty results in some positive duration of time for an amount of energy 'delta E' to manifest.

I think the rejection to my proof that Planck's Law is a mathematical tautology that describes the interaction of measurement is more 'disbelief' than 'refutation'. It cuts so deeply into the grain and fibre of modern physical thinking. It's just hard for physicists to accept.

Best regards,

Constantinos

report post as inappropriate

Dear ken,

really interesting, accessible, clear, enjoyable. Nice introduction explaining your approach to the question and where you are going with it. I definitely want to spend more time re reading it as it is full of good ideas and explanations.

PS.I have used a quote from your essay on the FQXi Time travel blog forum (where you very clearly explain the static nature of space time.)

Good luck Georgina.

report post as inappropriate

really interesting, accessible, clear, enjoyable. Nice introduction explaining your approach to the question and where you are going with it. I definitely want to spend more time re reading it as it is full of good ideas and explanations.

PS.I have used a quote from your essay on the FQXi Time travel blog forum (where you very clearly explain the static nature of space time.)

Good luck Georgina.

report post as inappropriate

Ken / Costas

There's much more on delay time too. Also look at the Mossbauer effect (1957) where the charge/emission scattering delay is attributed to 'recoil.' There is a logical discrepancy here related to continuous processes, which is probably why his results are oft ignored, but the actual results have been repeated and confirmed (At one of the US major universities I think).

The frequency dependence of PMD in fibre optics is fascinating, as it also reverses at a certain frequency! My work focussed on harmonics, which explains this and absorption bands in terms of Huygens/Fresnel principle (HFP), in similar terms to superconductivity. Waves are still very poorly understood!

Peter

report post as inappropriate

There's much more on delay time too. Also look at the Mossbauer effect (1957) where the charge/emission scattering delay is attributed to 'recoil.' There is a logical discrepancy here related to continuous processes, which is probably why his results are oft ignored, but the actual results have been repeated and confirmed (At one of the US major universities I think).

The frequency dependence of PMD in fibre optics is fascinating, as it also reverses at a certain frequency! My work focussed on harmonics, which explains this and absorption bands in terms of Huygens/Fresnel principle (HFP), in similar terms to superconductivity. Waves are still very poorly understood!

Peter

report post as inappropriate

Dear Ken

I agree with your arguments about the fact that discreteness is just a consequence of our models, but in the same way continuity is also just a consequence of our models. Until now We have ignored that the properties of nature we see are conditioned by our models particularly by the logic we use to study nature; this is not a philosophical idea but a mathematical reality. On my essay I try to explain how our perception of quantum reality is blurred by the use of classical-logic tools. I would like to hear your opinions about it.

Regards,

J. Benavides

report post as inappropriate

I agree with your arguments about the fact that discreteness is just a consequence of our models, but in the same way continuity is also just a consequence of our models. Until now We have ignored that the properties of nature we see are conditioned by our models particularly by the logic we use to study nature; this is not a philosophical idea but a mathematical reality. On my essay I try to explain how our perception of quantum reality is blurred by the use of classical-logic tools. I would like to hear your opinions about it.

Regards,

J. Benavides

report post as inappropriate

Dear Ken,

Thanks for a fascinating essay. I agree with premise to take the unpopular route of making QT more compatible to GR. Focusing on the measurement problem from the GR POV is both novel and creative. I also would like to point out the work of Joy Christian which I was introduced on the forum of FQXI's very own website, which seems to support your work, although he concentrates on non-locality. He uses topological and division algebra arguments to conclude *that "quantum non-locality" is nothing but a make-belief of the topologically naive.*

Having said that I have one small "quibble" of my own. You wrote: "First and foremost, GR is a theory of spacetime."

It was my understanding that GR was first and foremost a theory of gravity, that includes spacetime. Isn't true that GR is actually agnostic as to the ontology of spacetime? Although gravity is assumed to be the curvature of spacetime, isn't it indistinguishable from a field in an arbitrary background? For example see here. In the words of Kip Thorne, isn't the "curved spacetime paradigm" equivalent to the "flat spacetime paradigm" in GR?

I would be interested in your response, and thanks again for a beautiful essay.

Dan

report post as inappropriate

Thanks for a fascinating essay. I agree with premise to take the unpopular route of making QT more compatible to GR. Focusing on the measurement problem from the GR POV is both novel and creative. I also would like to point out the work of Joy Christian which I was introduced on the forum of FQXI's very own website, which seems to support your work, although he concentrates on non-locality. He uses topological and division algebra arguments to conclude *that "quantum non-locality" is nothing but a make-belief of the topologically naive.*

Having said that I have one small "quibble" of my own. You wrote: "First and foremost, GR is a theory of spacetime."

It was my understanding that GR was first and foremost a theory of gravity, that includes spacetime. Isn't true that GR is actually agnostic as to the ontology of spacetime? Although gravity is assumed to be the curvature of spacetime, isn't it indistinguishable from a field in an arbitrary background? For example see here. In the words of Kip Thorne, isn't the "curved spacetime paradigm" equivalent to the "flat spacetime paradigm" in GR?

I would be interested in your response, and thanks again for a beautiful essay.

Dan

report post as inappropriate

Hi Dan,

Thanks for your comments... You certainly make a fair point -- I'm sure that a dozen different physicists would give you nearly as many different answers to the fill-in-the-blank sentence: "First and foremost, GR is a theory of ___ ". I was coming at it from the perspective that GR is more naturally about block-spacetime than it is about the dynamics of instantaneous 3-geometries... but now that you mention it, I certainly should have hedged my pronouncement somewhat.

That said, the problem with thinking of gravity as a field on flat spacetime is that it raises the possibility of *other* fields that aren't coupled to gravity in the ordinary way. You avoid this issue by setting the other fields directly into curved spacetime. Sure, maybe the equivalence principle will fail and one will be forced to consider this possibility, but one shouldn't confuse this (evidence-free) motivation with the more typical motivation: we don't know how to implement standard quantum theories in curved spacetime. To me, this is all the more reason to drop back to classical fields (which work perfectly well in curved spacetime), and try to figure out how quantum-like behavior might emerge from those GR-compatible entities.

For more of my thoughts on these issues, you could try Reference [11], which is also online at arxiv.org/abs/0706.4075 .

Cheers, Ken

Thanks for your comments... You certainly make a fair point -- I'm sure that a dozen different physicists would give you nearly as many different answers to the fill-in-the-blank sentence: "First and foremost, GR is a theory of ___ ". I was coming at it from the perspective that GR is more naturally about block-spacetime than it is about the dynamics of instantaneous 3-geometries... but now that you mention it, I certainly should have hedged my pronouncement somewhat.

That said, the problem with thinking of gravity as a field on flat spacetime is that it raises the possibility of *other* fields that aren't coupled to gravity in the ordinary way. You avoid this issue by setting the other fields directly into curved spacetime. Sure, maybe the equivalence principle will fail and one will be forced to consider this possibility, but one shouldn't confuse this (evidence-free) motivation with the more typical motivation: we don't know how to implement standard quantum theories in curved spacetime. To me, this is all the more reason to drop back to classical fields (which work perfectly well in curved spacetime), and try to figure out how quantum-like behavior might emerge from those GR-compatible entities.

For more of my thoughts on these issues, you could try Reference [11], which is also online at arxiv.org/abs/0706.4075 .

Cheers, Ken

Ken,

I'm glad you clarified this point. I didn't have a problem understanding it, though I did note by their comments that at least a couple of other people in the contest did.

I agree heartily with your research program. If you haven't had a chance to read my essay, I do hope you can before the polls close.

Best,

Tom

report post as inappropriate

I'm glad you clarified this point. I didn't have a problem understanding it, though I did note by their comments that at least a couple of other people in the contest did.

I agree heartily with your research program. If you haven't had a chance to read my essay, I do hope you can before the polls close.

Best,

Tom

report post as inappropriate

Dear Ken,

Thanks, for your response. You have given me some food for thought. I have read your ref. [11] and confirms what I had deduced from your essay; your work is essential to gaining a better understanding of the foundations of the "quantum realm".

Wishing you continued success,

Dan

report post as inappropriate

Thanks, for your response. You have given me some food for thought. I have read your ref. [11] and confirms what I had deduced from your essay; your work is essential to gaining a better understanding of the foundations of the "quantum realm".

Wishing you continued success,

Dan

report post as inappropriate

Ken

Further to my post above Dan Bruiger has just posted me this, on reverese Doppler shift, apparently surprising but consistent with discrete fields (DFM) and my CD/Harmonics paper I reffered above. http://physicsworld.com/cws/article/news/45366

My theory predicts the effect, emerging as a natural result of harmonics, which proves the Regaza delay factor, (found experimentally anyway in PMD) and also it's reverse over short harmonic frequencies where wave particle 'polarisation' inverts.

I haven't read the paper yet, but was sure you'd be interested too.

Best wishes

Peter

report post as inappropriate

Further to my post above Dan Bruiger has just posted me this, on reverese Doppler shift, apparently surprising but consistent with discrete fields (DFM) and my CD/Harmonics paper I reffered above. http://physicsworld.com/cws/article/news/45366

My theory predicts the effect, emerging as a natural result of harmonics, which proves the Regaza delay factor, (found experimentally anyway in PMD) and also it's reverse over short harmonic frequencies where wave particle 'polarisation' inverts.

I haven't read the paper yet, but was sure you'd be interested too.

Best wishes

Peter

report post as inappropriate

Ken,

"At the very least, the \measurement problem" should give one pause when drawing digital conclusions from quantum theory. As for the best, there is promise that we can solve the measurement problem by framing it in our continuous block universe."

I don't see a commitment to one or the other but I do see an open mind that perhaps cagily lean toward analogue which is my perspective but less well-argued.

Jim

report post as inappropriate

"At the very least, the \measurement problem" should give one pause when drawing digital conclusions from quantum theory. As for the best, there is promise that we can solve the measurement problem by framing it in our continuous block universe."

I don't see a commitment to one or the other but I do see an open mind that perhaps cagily lean toward analogue which is my perspective but less well-argued.

Jim

report post as inappropriate

Ken,

Well written essay with many good arguments for a continuous reality. You are being a little unfair with the Wikipedia quote. If the word "bound" means stable forever (i.e. infinite lifetime) then the energy must have a single discrete value. Also as you know I don't like the block universe model. Such a model doesn't allow for causal chains. I do like retro-causation in the quantum world where future events can bring reality to properties which are initially undefined in the past. Causal chains in the macroworld go forward in time and this gives time its sense of flow from past to future. A block universe doesn't have any sense of time flow.

Finally, it is good that you acknowledge that we will probably never know for sure if reality is discrete or continuous.

Bill

report post as inappropriate

Well written essay with many good arguments for a continuous reality. You are being a little unfair with the Wikipedia quote. If the word "bound" means stable forever (i.e. infinite lifetime) then the energy must have a single discrete value. Also as you know I don't like the block universe model. Such a model doesn't allow for causal chains. I do like retro-causation in the quantum world where future events can bring reality to properties which are initially undefined in the past. Causal chains in the macroworld go forward in time and this gives time its sense of flow from past to future. A block universe doesn't have any sense of time flow.

Finally, it is good that you acknowledge that we will probably never know for sure if reality is discrete or continuous.

Bill

report post as inappropriate

Thanks, everyone, for the nice comments... I apologize for not finding the time lately to respond to everyone personally.

The essay's reference [10] (with co-authors David Miller and Huw Price) is finally ready for public viewing... It's now at http://arxiv.org/abs/1103.2492 . Comments on that paper are probably best sent via email, rather than here.

Ken

The essay's reference [10] (with co-authors David Miller and Huw Price) is finally ready for public viewing... It's now at http://arxiv.org/abs/1103.2492 . Comments on that paper are probably best sent via email, rather than here.

Ken

Dear Ken,

Congratulations on your dedication to the competition and your much deserved top 35 placing. I have a bugging question for you, which I've also posed to all the potential prize winners btw:

Q: Coulomb's Law of electrostatics was modelled by Maxwell by mechanical means after his mathematical deductions as an added verification (thanks for that bit of info Edwin), which I highly admire. To me, this gives his equation some substance. I have a problem with the laws of gravity though, especially the mathematical representation that "every object attracts every other object equally in all directions." The 'fabric' of spacetime model of gravity doesn't lend itself to explain the law of electrostatics. Coulomb's law denotes two types of matter, one 'charged' positive and the opposite type 'charged' negative. An Archimedes screw model for the graviton can explain -both- the gravity law and the electrostatic law, whilst the 'fabric' of spacetime can't. Doesn't this by definition make the helical screw model better than than anything else that has been suggested for the mechanism of the gravity force?? Otherwise the unification of all the forces is an impossiblity imo. Do you have an opinion on my analysis at all?

Best wishes,

Alan

report post as inappropriate

Congratulations on your dedication to the competition and your much deserved top 35 placing. I have a bugging question for you, which I've also posed to all the potential prize winners btw:

Q: Coulomb's Law of electrostatics was modelled by Maxwell by mechanical means after his mathematical deductions as an added verification (thanks for that bit of info Edwin), which I highly admire. To me, this gives his equation some substance. I have a problem with the laws of gravity though, especially the mathematical representation that "every object attracts every other object equally in all directions." The 'fabric' of spacetime model of gravity doesn't lend itself to explain the law of electrostatics. Coulomb's law denotes two types of matter, one 'charged' positive and the opposite type 'charged' negative. An Archimedes screw model for the graviton can explain -both- the gravity law and the electrostatic law, whilst the 'fabric' of spacetime can't. Doesn't this by definition make the helical screw model better than than anything else that has been suggested for the mechanism of the gravity force?? Otherwise the unification of all the forces is an impossiblity imo. Do you have an opinion on my analysis at all?

Best wishes,

Alan

report post as inappropriate

Dear Ken,

thank you for the citation added (even though the long delay) in your paper arXiv:1003.4273 [

Time-symmetric boundary conditions and quantum foundations] to my paper arXiv:0903.3680 [Compact Time and Determinism for bosons: foundation].

As you have already noticed, in my essay [ref:http://www.fqxi.org/community/forum/topic/901] Clockwork Quantum Universe [\ref] (thank you also for the congratulations for this first phase on the contest) the possibility of a consistent interpretation of quantum mechanics in terms of boundary conditions.

Cheers,

Donatello

report post as inappropriate

thank you for the citation added (even though the long delay) in your paper arXiv:1003.4273 [

Time-symmetric boundary conditions and quantum foundations] to my paper arXiv:0903.3680 [Compact Time and Determinism for bosons: foundation].

As you have already noticed, in my essay [ref:http://www.fqxi.org/community/forum/topic/901] Clockwork Quantum Universe [\ref] (thank you also for the congratulations for this first phase on the contest) the possibility of a consistent interpretation of quantum mechanics in terms of boundary conditions.

Cheers,

Donatello

report post as inappropriate

Dear Ken,

I would like to introduce myself in quantum terminology and share the truth that I have experienced with you. who am I?

I superpositioned myself to be me, to disentangle reality from virtuality and reveal the absolute truth.

Love,

Sridattadev.

report post as inappropriate

I would like to introduce myself in quantum terminology and share the truth that I have experienced with you. who am I?

I superpositioned myself to be me, to disentangle reality from virtuality and reveal the absolute truth.

Love,

Sridattadev.

report post as inappropriate

Login or create account to post reply or comment.