RECENT ARTICLES

The quest for a meta-theory of quantum control that could one day explain physical systems, certain biological phenomena—and maybe even politics.

Is quantum theory or relativity right about the nature of time? Bouncing radar beams off the moons of Jupiter just might help sort things out.

Using tiny mechanical devices to create accelerations equivalent to 100 million times the Earth’s gravitational field—mimicking the arena of quantum gravity in the lab.

The fuzziness of the quantum realm could arise from mathematical restrictions on what can ever be known.

Combining theories of quantum information with the science of heat and energy transfer could lead to new technologies.

FQXI ARTICLE

October 4, 2015

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

**Important:** In order to combat spam, please select the letter in this menu between 'O' and 'Q':
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

REASON MCLUCUS wrote on May 27, 2007

The radio signals most likely to be detectable would be those emitted by scientific probes or even communications between space ships (for space traveling civilizations).

Such signals would of necessity have more power behind them and thus be more likely to be detectable over long distances. Normal intraplanatary communications only need sufficient power to travel at most a distance measured in kilometers. Communications to distant probes need power and frequencies that can travel...

The radio signals most likely to be detectable would be those emitted by scientific probes or even communications between space ships (for space traveling civilizations).

Such signals would of necessity have more power behind them and thus be more likely to be detectable over long distances. Normal intraplanatary communications only need sufficient power to travel at most a distance measured in kilometers. Communications to distant probes need power and frequencies that can travel...

read all article comments

And select the letter between 'J' and 'L':