RECENT ARTICLES

To build the ultimate artificial mimics of real life systems, we may need to use quantum memory.

A radical interpretation of physics makes quantum theory more personal.

Carlo Rovelli describes how black holes may transition to "white holes," according to loop quantum gravity, a radical rewrite of fundamental physics.

Could giant sea swells help explain how the macroscopic world emerges from the quantum microworld? (Image credit: MIT News)

A "retrocausal" rewrite of physics, in which influences from the future can affect the past, could solve some quantum quandaries—saving Einstein's view of reality along the way.

FQXI ARTICLE

February 28, 2017

Painting a QBist Picture of Reality

A radical interpretation of physics makes quantum theory more personal.

FQXi Awardees: Christopher Fuchs, Christopher Timpson

January 22, 2017

Christopher Fuchs

University of Massachusetts Boston

It is this unorthodox philosophy of "participatory realism" that has led Fuchs, now at the University of Massachusetts Boston, to develop QBism: a radical interpretation of quantum theory that brings the role of the observer to center stage. Working mainly in collaboration with physicist Ruediger Schack at Royal Holloway, University of London, UK, Fuchs challenges the near-universal assumption among scientists that we can aspire to an overarching ’God’s eye view’ of how nature operates.

"Participatory realism says that no, there is no God’s eye view; the universe is too unwritten for that," says Fuchs.

Unorthodox or not, however, Fuchs’ participatory realism approach has already led to new practical insights in quantum cryptography—the field that exploits quantum features to securely transmit data. Now, along with philosopher Christopher Timpson, of Oxford University, UK, and with the aid of an FQXi grant of almost $141,000, Fuchs will investigate how QBism stacks up against rival quantum interpretations.

Quantum Lawlessness

Fuchs first became hooked on physics as an undergraduate at the University of Texas in Austin, in the 1980s. There, he met the physicist John Archibald Wheeler—a veteran of the Manhattan Project whose fertile imagination was still constantly probing the foundations of his science. One of Wheeler’s many fascinations was quantum theory, which describes the atomic realm in which nuclei fall apart without warning and particles can seemingly be in many different places at once—or even spin clockwise and counterclockwise simultaneously. Wheeler saw in the lawlessness of quantum measurement outcomes a hint that the universe as a whole might be lawless in a deep sense and more malleable to human action than previously imagined. (See "Reality’s Neverending Story.")

There is no God’s

eye view; the universe

is too unwritten for

that.

eye view; the universe

is too unwritten for

that.

- Christopher Fuchs

It has also never been clear exactly what the wave function is—a convenient calculating tool or something real. In practice, those quantum probabilities are so useful that most young physicists soon give up worrying about the nature of the wavefunction and how quantum probabilities arise and just get on with their work. It’s an attitude that Cornell University physicist David Mermin likes to call, "Shut up and calculate!"

But Fuchs couldn’t let it go. Instead, he has been thinking deeply about the mathematics of probability in a quantum context. The probabilities that lie at the heart of quantum theory are usually interpreted as how frequently something will happen if you repeat an experiment zillions of times. This is how we’re taught to think about probability in school, and serves us well in simple situations. For instance, if you throw a pair of dice 36 million times, say, you will come very close to getting a million double-sixes. This reflects a seemingly objective 1 in 36 probability of that outcome; given fair dice, both you and I will calculate this same probability.

Degrees of Belief

But even in everyday life, calculating probabilities can be a lot messier and more subjective. Think about how two pollsters can make opposite predictions for the outcome of an election, due to biases in the samples of people they surveyed. The predictions of the winner also need to be constantly revised and updated on election night as partial results from different voting regions are revealed. In such cases, it is more fruitful to think of probabilities as an individual observer’s degree of belief that an outcome will occur—and to think of experiments that yield new and relevant data as a process for updating that belief.

This interpretation of probability goes back at least to the 18th century, when the English clergyman Thomas Bayes first wrote down a formula showing how to update beliefs based on new evidence. Fuchs and Schack realised that this more sophisticated interpretation of probabilities could also be applied to the quantum realm. They dubbed the resulting mathematics ’Quantum Bayesianism’—QBism, for short (C. A. Fuchs, arXiv:1003.5209).

Participatory Realism

Is the outcome of a quantum measurement in the eye of the beholder?

Credit: istock

QBism remains a niche interpretation, but it is gaining interest. Timpson notes that he was initially a skeptic, but as he delved into it, he began to realize that the ideas were surprisingly consistent and rigorous. One strength is that its mathematical framework is completely equivalent to that of standard quantum theory. This is an issue that Timpson, Fuchs and their students will systematically dig into, with the help of their FQXi grant. They plan to study similar work on quantum foundations being carried out by other physicists, and try to understand how all their many approaches to realism are related. Then they will try to thrash things out with a genuine debate. "There is this internal dialectic that’s one of the significant strengths of the project," says Timpson. "I’ve always been much more of a traditional realist, while Chris has always been wanting to challenge tradition."

Their participatory perspective has already offered new insights, adds Fuchs: In 2002, Fuchs and Schack, along with colleague Carlton Caves, used the QBism formulation to prove a theorem that has now found use in the field of quantum cryptography (R. Renner, arXiv:quant-ph/0512258). "What’s…interesting is whether a new interpretation causes someone to think in new directions, and results in new questions and experiments," Fuchs says.

Mermin has also become a late convert to QBism. He had been dubious until 2012, when he happened to spend six weeks at a workshop that Fuchs and Schack had organized in South Africa. "Sometime in week five, they persuaded me that this stuff ought to be taken seriously," says Mermin. It resonated strongly with his own empiricist views: "We have no access to the world except through our own experience," he says. And once you accept that, "then the question becomes, how do we arrive, with our fellow human beings, to a common understanding of the world? It’s that shared reality that corresponds to what we call the objective world—what we call science."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

**Important:** In order to combat spam, please select the letter in this menu between 'W' and 'Y':
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

PHIL HOFFMANN wrote on February 15, 2017

Taking a Bayesian stance to probability in QM is not new, and aligns with the view that subjectivity is baked into QM. But "participatory realism" sounds like an oxymoron, or at least like wanting to have your cake and eat it, too.

Phil

Taking a Bayesian stance to probability in QM is not new, and aligns with the view that subjectivity is baked into QM. But "participatory realism" sounds like an oxymoron, or at least like wanting to have your cake and eat it, too.

Phil

JIM HUGHES wrote on February 2, 2017

I think there's an independent reality. I only take issue with calling it a*physical* reality. The word 'physical' denotes nothing at this point. All we have are observations, i.e. facts of which we've become aware. And there's no one-to-one correspondence between these facts and the conceptual entities we call particles. In the case of entanglement, one fact might be about multiple particles.

I believe there's an independently existing reality, because I believe there are other...

I think there's an independent reality. I only take issue with calling it a

I believe there's an independently existing reality, because I believe there are other...

GEORGINA WOODWARD wrote on February 1, 2017

Re previous post, Feb. 1, 2017 @ 21:09 GMT: I should have said '....will only give results consistent with its momentum and angular momentum....' and 'That idea can be extrapolated to other objects with opposite angular momentum'.

Re previous post, Feb. 1, 2017 @ 21:09 GMT: I should have said '....will only give results consistent with its momentum and angular momentum....' and 'That idea can be extrapolated to other objects with opposite angular momentum'.

read all article comments

And select the letter between 'E' and 'G':