Search FQXi


Mike Witot: "Great. Thanks a lot for posting that info! click here" in A Self-Gravitational...

Mike Witot: "I really like to read this informations click here" in Dimensional Reduction in...

Mike Witot: "I think this is really interesting click here" in Chasing the black holes...

kurt stocklmeir: "em drive metamaterials at 1 end that create negative radiation pressure -..." in Alternative Models of...

jiya joseph: "I guess a workshop is conducted by the people that are favorable for the..." in Schrödinger’s Cat...

mono joli: "thanks a lot for such a great topic. Scary Maze Games Basketball Legends..." in The Race to Replace the...

Joe Fisher: "Dear Dr. Brendan Foster, Of course: “We Are All Connected .” My..." in We Are All Connected

Caroline v: "Thanks for informing us about FQXi-sponsored workshop which aim was to..." in Schrödinger’s Cat...

click titles to read articles

Our Place in the Multiverse
Calculating the odds that intelligent observers arise in parallel universes—and working out what they might see.

Sounding the Drums to Listen for Gravity’s Effect on Quantum Phenomena
A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Watching the Observers
Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

Bohemian Reality: Searching for a Quantum Connection to Consciousness
Is there are sweet spot where artificial intelligence systems could have the maximum amount of consciousness while retaining powerful quantum properties?

Quantum Replicants: Should future androids dream of quantum sheep?
To build the ultimate artificial mimics of real life systems, we may need to use quantum memory.

October 18, 2017

Collapsing Physics: Q&A with Catalina Oana Curceanu
Tests of a rival to quantum theory, taking place in the belly of the Gran Sasso d’Italia mountain, could reveal how the fuzzy subatomic realm of possibilities comes into sharp macroscopic focus.
by Carinne Piekema
FQXi Awardees: Catalina Oana Curceanu
June 24, 2016
Bookmark and Share

Catalina Oana Curceanu
National Institute of Nuclear Physics, Frascati, Italy
In 2015, physicist Catalina Oana Curceanu, of the National Institute of Nuclear Physics, in Frascati, Italy received an FQXi grant of $85,000 to investigate how the uncertain fuzziness of the microscopic quantum realm transitions to the definite macroscopic world we see around us. In particular, she and her colleagues are carrying out experiments to test how measurements force quantum systems to take definite properties—as she explains to Carinne Piekema.

You plan to test a proposed solution to the so-called "quantum measurement problem." What is the measurement problem?

The theory of quantum mechanics is very successful in describing the world and phenomena on a microscopic scale (electrons, atoms, and even molecules), but it starts to be questionable whether the same theory can describe macroscopic bodies, or aggregates of many, many atoms.

The superposition principle tells us that microscopic bodies can be in various possible states at the same time (Schrödinger’s famous cat is both dead and alive). This is described mathematically using a "wavefunction," which comes from solving an equation derived by Erwin Schrödinger. However, when one performs a measurement only one definite answer arrives (the cat is either dead or alive): the wavefunction has collapsed. This is the famous "measurement problem."

The question is then: how does the wavefunction collapse to generate the event we see? Our FQXi project deals with exactly this question.

Different models have been suggested to explain this collapse from the micro to macro worlds. Which collapse model are you using and why?

We aim to measure signals from a theory that modifies the Schrödinger equation, adding terms that induce the collapse of the wavefunction in a very natural way. The specific model we use is the "continuous spontaneous localization" model. This has the nice feature that it allows microscopic systems to remain in superposition for a long time, while it immediately collapses the wavefunction of big bodies. This collapse is thought to be induced by the interaction of the particles with a special collapsing "field."

How can you test whether this hypothesized field exists, in the lab?

We might see
shadows of
a new physics.
- Catalina Oana Curceanu
What we measure is the spontaneous radiation resulting from the interaction of particles with the collapsing field. Imagine for example a free electron moving in space: if there is no field to induce a collapse, the electron will go in a straight line forever. If, however, there is the interaction with this collapsing field, it will cause the electron to zigzag. Whenever the trajectory changes, the system emits radiation.

This emission is not present in standard quantum mechanics, but is a unique feature of the collapse model and we are trying to measure it.

Where does the collapsing field that causes the radiation come from?

This radiation is not due to some field that is known, but would appear to be a weird phenomenon in which energy does not seem to be conserved. Of course, in reality, energy is conserved, but we would need to know the theory "beyond standard quantum mechanics" to conserve it properly. A hypothesis is that this field could be related to the gravitational field.

Which quantum systems are you testing in the lab?

We use an ultrapure germanium detector and measure the radiation emitted by the detector itself, searching for the spontaneous radiation emitted by the electrons as well as the protons of germanium atoms.

Quantum Tunneling
Will an experiment buried deep within the Gran Sasso d’Italia
mountain reveal that an alternative model of the subatomic
world is right?
These must be very small signals in an environment that has a lot of radiation from other sources. How are you able to create circumstances clean enough to measure spontaneous radiation?

We try to reduce the influence of cosmic radiation as much as possible, so we do our experiments in the belly of the Gran Sasso d’Italia mountain. The LNGS laboratory—three huge cathedral-like spaces in the mountain connected by galleries—is located half way in the 10km long tunnel that connects the cities of L’Aquila and Teramo. In the mountain, cosmic rays are reduced by a factor of a million with respect to ground experiments.

To reduce the background even further, we use ultra pure germanium instruments. However, there is still some radiation from the materials we use to perform our experiments and from the environment (as radon). So we use Monte Carlo simulations for data analyses to see which part of the X-ray spectrum we measure does not come from the collapse, but from radionuclides present in the setup materials.

Do you have any results yet?

We have done preliminary measurements and are now analysing the data. We are finding out what part of our signal can be ascribed to the residual background. Some very interesting results are coming out which we hope to publish soon.

What happens if you don’t see any radiation? Would that allow you to rule out such collapse models?

Collapse models are characterised by the so-called "lambda-parameter," which describes the number of interactions of particles with the collapsing field per second. There are two limits proposed in theory. One is conservative (proposed by physicist GianCarlo Ghirardi at the University of Trieste, in Italy and others) in which lambda is 10-17 interactions per second. The other, put forward by physicist Steve Adler at the Institute of Advanced Studies, in Princeton, New Jersey, is 10-9. We can already exclude the latter and we hope to approach the other limit too. If we could somehow exclude Ghirardi’s limit then either the collapse models as they are have to be discarded, or more likely, they need to be modified. We might see shadows of a new physics.

Do you think we are close to fully understanding the relationship between the quantum and classical worlds?

I believe there is a continued search for deeper understanding, but I don’t believe there is a theory of everything yet. It might also be that we are with quantum mechanics where Newton was with respect to Einstein. With the numerous experiments that are going on today, I hope we might get a hint of a new theory and I hope to contribute by performing nice experiments. It is also a lot of fun!

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!
  • Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

  • HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

  • You may use superscript (10100) and subscript (A2) using [sup]...[/sup] and [sub]...[/sub] tags.

  • You may use bold (important) and italics (emphasize) using [b]...[/b] and [i]...[/i] tags.

  • You may also include LateX equations into your post.

Insert LaTeX Equation [hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation
clear equation
insert equation into post at cursor

Your name: (optional)

Recent Comments

Let us be very careful about classical and quantum concepts. Sometimes we talk of one such idea in quantum gravity which will also explain classical. The question of GR and its application in quantum is a huge problem Time ideas in both the theories does not match . We do not even know whether Einstein is correct in his GR approach. The fact of matter is gravity is not a potential or field of infinite range etc. Gravity is emergent due two types of gravitons. One is FERMION GRAVITON...

What are your geometrical algebras implying this ? Lie,Clifford,Magma,Hopf....Tell me I will show you your errors in all humility.I will share if you want my spherical algebras with the spherical volumes and p adics numbers correlated with the universal serie of spherical volume giving the serie of uniqueness.This is for the stable gravitational serien encoding ,not the particles produced by cosmological sphères of course.Nothing is easy and we know nothing still about our universe?THE...

@Joe Fisher

That's not quite accurate. You can't sum infinity, but you can describe set interactions at specific points without bounding the set itself. This gives behavior in regions.

read all article comments

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.