RECENT ARTICLES

Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

Is there are sweet spot where artificial intelligence systems could have the maximum amount of consciousness while retaining powerful quantum properties?

To build the ultimate artificial mimics of real life systems, we may need to use quantum memory.

A radical interpretation of physics makes quantum theory more personal.

Carlo Rovelli describes how black holes may transition to "white holes," according to loop quantum gravity, a radical rewrite of fundamental physics.

FQXI ARTICLE

June 24, 2017

Purifying Physics: The Quest to Explain Why the “Quantum” Exists

A new framework for the laws underlying reality could explain why nature obeys quantum rules, the origin of time’s arrow, and the power of quantum computing.

FQXi Awardees: Giulio Chiribella

February 9, 2015

Giulio Chiribella

Tsinghua University

As a schoolboy, Giulio Chiribella dreamed of becoming a composer, someone who could imbue music with the "deep ideas of our age." He studied the piano at a conservatory in Mantova, Italy, and even began working towards a diploma in music composition. But soon he hit an artistic wall. "I felt that in order to be a complete artist I needed to know about the foundations of our knowledge of the world," he says. "How could I ignore the foundations of physics and of all we know about reality?"

To that end, Chiribella, now a quantum physicist at Tsinghua University in Beijing, China, studied physics and mathematics and quickly got hooked. The search for deeper foundations has now led him and his colleagues, Giacomo Mauro D’Ariano and Paolo Perinotti at the University of Pavia, in Italy, to rewrite the rules at the core of theoretical physics. They have identified five fundamental principles common to both the ‘classical physics’ that governs everyday objects that we see around us and the bizarre quantum rules that control the behavior of particles in the subatomic realm. It is a feat that is akin to finding a basic set of musical tunes from which any elaborate symphony can be composed.

According to this model, the difference between the quantum and classical worlds comes down to one simple extra feature, which they dub the "purification principle"—an axiom that brings the information content of quantum systems to centre stage. With this in place, they are able to explain many of the other strange properties that we see in quantum experiments and why our quantum equations work so well. Their findings could help us understand the origin of time’s arrow and may even have implications for physicists developing algorithms for quantum computers, which are expected to outperform today’s standard machines.

Embarrassing Problem

Quantum mechanics is one of our most successful physical theories: It allows us to describe elementary particles and fundamental forces, to understand chemical reactions, and to construct lasers, transistors, and computers. Yet it has, in the team’s words, an "embarrassing problem": the rules of quantum mechanics are an enigma because they are not derived from intuitive principles. While you can describe the laws of classical mechanics, set out centuries ago by Isaac Newton, in terms of easy to understand concepts like the position and speed of particles, quantum mechanics is built from a handful of abstract axioms, which themselves are inspired by the weird experimental observations made by physicists in the early twentieth century. In order to use quantum mechanics, you can just accept these strange features as given, without really having any deep insight into how or why they arise—or even to what entities the laws refer.

"It is hard not to suspect that, despite all our experimental and technological advancement, we are completely missing the big picture," Chiribella, D’Ariano and Perinotti wrote in a paper outlining their new formulation, in 2012 (Entropy, 14(10), 1877-1893 (2012)). "We cannot even tell what quantum theory is without resorting to…abstract language… What does this mean? Why should Nature be described by this very special piece of mathematics?"

Despite all our experimental

and technological advancement,

we are completely missing

the big picture.

and technological advancement,

we are completely missing

the big picture.

- Chiribella, D'Ariano & Perinotti

In 2010, Chiribella, D’Ariano and Perinotti identified a more commonplace set of alternative postulates from which all other physical properties—both classical and quantum—could be derived (

The Purification Principle

Their five axioms are valid both for classical and quantum systems. It is the sixth postulate, dubbed "the purification principle," which lies at the heart of the team’s alternative take on quantum theory. It marks out why particles behave so differently at the subatomic level compared with objects we see around us.

The purification principle homes in on the information content of a quantum system. Quantum physicists already differentiate between systems that are in a "pure state" and those that are in a "mixed state" based on how much information it is possible to glean from them. To see the difference between these two types of states, you can think about the quantum property of

Using purification and the other five axioms, the team derived the other basic (and bizarre) rules that govern quantum systems. That includes superposition—the feature that says that before a quantum particle is observed it can exist in a superposition of multiple states, potentially being in two places at the same time, for instance. They have also derived the rule set out by German physicist Max Born for calculating the probability of getting a certain outcome when making a measurement of a quantum system. By contrast, under the standard formulation of quantum theory, the Born rule must just be assumed to be correct.

Pure Particles

Every system in a mixed state is part of a larger system in a pure state.

Credit: agsandrew

The standard explanation is to look to the science of heat and energy transfer, thermodynamics. The equations of thermodynamics are irreversible. In particular, physicists relate the arrow of time to the direction in which the entropy of a system—or its disorder—increases. But while entropy gives a possible explanation for how time’s arrow arises, this discrepancy between microscopic reversibility and macroscopic irreversibility bothered the founders of the field. "Thermodynamics was clashing with the leading paradigm of fundamental physics, that dynamical equations should be reversible at the fundamental level" says Chiribella.

But, Chiribella and colleagues asked, what if a system seems irreversible only because we are studying a part of the system (analogous to a mixed state) and if the whole system (analogous to a pure state) were taken into consideration, then its evolution would be reversible? "Purification offers fundamental physics the possibility of reconciling irreversible evolution, which is something we actually we see, with the goal to write down the fundamental equations that are ultimately reversible," says Chiribella.

Ignorance becomes speed.

- Giulio Chiribella

So, that’s the easy answer for why the equation looks the way it does. But Chiribella is after some deeper insights. His next question: Is there a relationship between the dynamics of quantum systems, as given by the Schrödinger equation, and the features of quantum systems that, in theory, power quantum computation?

To investigate, the team has considered one of the landmark algorithms, originally laid out by computer scientist Lov Grover, in the 1990s, that helped to define the potential of quantum computing. Grover was interested in the problem of searching

Pure and Reversible Computer

Could this speed-up be derived from fundamental principles, just based on the idea that a quantum computer is a "pure and reversible computer" in Chiribella’s words? There are indications that this should be possible. A classical computation, if it has to be reversible, has to keep track of all the information from the previous step in the calculation, and it has to carry this all the way through to the end. But a quantum algorithm doesn’t have to suffer the same way because the computer can be "ignorant" of one property you don’t care about, and can keep track only of the information that will lead you to find the result. "Ignorance becomes speed," says Chiribella.

Caslav Brukner, a quantum physicist at the University of Vienna, Austria, says that with the help of the purification principle it is now possible to ask profound questions that otherwise could not be articulated mathematically. Say, you made a measurement of a quantum system using a measurement device, and get one result. Then some "super-observer" makes a second measurement that includes both the system that you looked at and the measurement device, itself. If quantum mechanics applies to all objects, then you would expect these two results to be consistent—and the purification principle provides a clear explanation: The first measurement is analogous to working with a mixed state, and the bigger measurement to a pure state. "The purification postulate is a deep statement that ensures that these two descriptions are consistent with each other," says Brukner.

Lucien Hardy of the Perimeter Institute in Waterloo, Ontario, Canada, is also impressed by the work. Hardy has himself worked out a set of axioms from which to derive quantum theory. "Their papers are technically much more sophisticated than the papers that came before, and there are lots beautiful theorems," says Hardy.

With his FQXi grant, Chiribella wants to see if he can find a deep connection between purification, the dynamics of quantum systems, and quantum information theory. Ultimately, for Chiribella, it’s the aesthetics of purification realised in the world that drives him—much like bringing a piece of written music to life by playing it on the piano: "If you really like beauty in a mathematical theory, it is so much more beautiful when you see that this is something that really happens in the physical world," says Chiribella.

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

**Important:** In order to combat spam, please select the letter in this menu between 'P' and 'R':
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

SABIR RAO RAO wrote on April 28, 2017

We are looking for the ways how to hack instagram password online and here is the thing that we should know.

We are looking for the ways how to hack instagram password online and here is the thing that we should know.

ANONYMOUS wrote on April 25, 2017

So, Ginger,

What is your thinking on whether Planck's yet to be rationalized set of equations constituting a distribution theorem, given an equi-partition assumption, is necessarily the physical reality resulting in a fundamental discrete quantity of energy rather than simply being an averaged least observable measure of action?

So, Ginger,

What is your thinking on whether Planck's yet to be rationalized set of equations constituting a distribution theorem, given an equi-partition assumption, is necessarily the physical reality resulting in a fundamental discrete quantity of energy rather than simply being an averaged least observable measure of action?

GINGER GREY wrote on April 25, 2017

When we studied Physics at Central Washington University, we used to hire an essaywriter to help us with homework and the like. But Quantum topic was the one on which I wrote all my assignments myself.

When we studied Physics at Central Washington University, we used to hire an essaywriter to help us with homework and the like. But Quantum topic was the one on which I wrote all my assignments myself.

read all article comments