RECENT ARTICLES

Resolving the black hole firewall paradox—by calculating what a real astronaut would compute at the black hole's edge.

Defining a ‘quantum clock’ and a 'quantum ruler' could help those attempting to unify physics—and solve the mystery of vanishing time.

Calculating the odds that intelligent observers arise in parallel universes—and working out what they might see.

A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

FQXI ARTICLE

December 15, 2017

Faster Than Light

A controversial theory in which light broke its own speed limit in the early universe joins forces with string theory *and* loop quantum gravity to solve cosmic mysteries.

May 22, 2012

JOÃO MAGUEIJO

Imperial College London

The constancy of the speed of light in a vacuum—pinpointed to 299,792,458 meters per second by hundreds of experiments—is a basic tenet of modern physics. In his theory of relativity, Einstein used light’s invariance as a yardstick to define how space and time expand or shrink according to the relative motions of an object and its observer. The speed of light sets the universe’s speed limit for how fast energy, matter, and information can travel; of all the supposed physical constants that are under scrutiny, the speed of light seems least likely to crumble. Yet today, research on the idea that the speed of light may vary is so prolific Magueijo admits he can’t keep up with it. It’s even receiving a new boost from two candidate models of fundamental physics: string theory and loop quantum gravity. So what is behind this surge in popularity?

Magueijo, at Imperial College London, UK, and his colleague, cosmologist Andreas Albrecht, a member of FQXi now at UC Davis, first came up with their varying speed of light (VSL) model in early 1997. The idea resolves two of the biggest problems with Big Bang cosmology: explaining the smoothness of the universe’s background radiation that we see today, called the horizon problem, and explaining the dynamics of expansion and the shape of the universe, which relates to its density, known as the flatness problem.

Expanding Horizons

To understand the horizon problem, imagine looking out at the background radiation that permeates the universe, a relic of the Big Bang explosion, due north and due south. The furthest you can see in each direction is the horizon, which is at a distance determined by the speed that light can travel from this point to you over the entire lifetime of the universe—about 15 billion light years. From the position at the north, the radiation at the south comes from a point that is twice this distance: double the age of the universe. Yet the temperature of the background radiation is incredibly uniform, with deviations of only one part in ten thousand. How can these completely disconnected parts of the universe be essentially identical in temperature? To answer this question, Magueijo and Albrecht argued that the speed limit for light in the early universe was raised, opening up the horizons and allowing everything to communicate much faster and have the same temperature. "The idea is so simple I can’t believe no one proposed it before," says Magueijo. "Well in fact the idea had been around, but what matters is what you do with it."

The flatness problem arises because of how the expansion of the universe is precisely balanced by the gravitational attraction of its matter, which is just sufficient to halt the expansion—preventing an open universe that accelerates into sterile emptiness—but not sufficient to curve it into a closed universe that ends in a cosmic crunch. This balancing act requires an unacceptably precise critical density within a fraction of a second of the Big Bang, hence the problem. This issue is resolved in the VSL model because the early universe is actually pushed back towards the critical density if it veers off into either scenario. This is because the curvature of spacetime is proportional to the energy density, but—unlike in the standard cosmological model—with a varying speed of light, energy is not conserved, allowing mass to be created or destroyed as the curvature veers towards an open or closed universe respectively.

Despite its success at explaining both the horizon and flatness problems, the VSL model initially appeared a bit too radical for many physicists. In part, that was because both these problems could be solved by a less controversial theory that did not throw out the sacred constancy of light’s speed: Inflation. Developed by FQXi member and cosmologist Alan Guth at MIT, in the late 1970s, inflation is the idea that the universe rapidly expanded for a brief period soon after the Big Bang. Now accepted as the textbook explanation for early universe cosmology, it addressed the horizon problem because, prior to inflation, far flung reaches of the universe would have been in contact, evening out their temperature. The process of inflation also naturally leads to the finely-balanced curvature of the cosmos that is observed, without requiring a precisely-tuned critical density soon after the Big Bang.

Magueijo acknowledges the success of the inflationary paradigm, but adds that until VSL theory came along, there were no serious alternatives to inflation. "I think it’s very bad in science when you only have one theory and no competitors to measure it against," he says. Magueijo also notes that VSL theory had another immediate advantage over inflation: While solving the flatness problem, Magueijo and Albrecht were surprised and excited to find that because VSL theory allowed matter to be created and destroyed as the universe’s curvature changed, they had stumbled on an explanation for where all the matter of the universe had come from.

It’s bad in science when

you only have one theory

and no competitors.

you only have one theory

and no competitors.

- João Magueijo

Magueijo has documented the struggle to get VSL accepted for publication in gory detail in his book

It took tenacity and guts to stick by the theory during the fraught period before its first publication. Magueijo traces his boldness to his upbringing in Portugal, among a population recovering from the restrictions of fascism. "You could be tortured, it was a horrible situation and people actually fought against it and paid a big price," he says. He grew up on these stories of resilience: fascism fell when he was 7 years old. He was particularly inspired by his tutor of musical composition, Lopes Graca, who had spoken out against the regime and was jailed and his music banned as a result. "Lopes Graca was a good role model for me because of his attitude and bravery. The threat we face for standing by our ideas is a lot softer now, yet we are so easily cowed by the establishment," says Magueijo.

Cosmic Challenger

FQXi member Lee Smolin, a physicist at PI, recalls the skepticism surrounding the publication of the theory and the reasons behind it: "It challenged accepted ideas about fundamental physics and accepted ideas about cosmology that many cosmologists believe in," says Smolin. However, he emphasizes that his friend Magueijo, is "no crank"; rather he is "extremely insightful, deeply imaginative, ambitious, and provocative, both intellectually and as a person."

COSMIC SIGNATURES

Will relic radiation from the Big Bang lend support to VSL theory?

Credit: ESA/Planck

A successful cosmological model can’t just produce any old structure, it has to produce structure that matches what we observe. When we look at the universe, we can see that the clumps of matter—on whatever scale you look—gather into the same honeycomb pattern. "Scale by scale by scale, the structure is invariant," says Magueijo. He found that VSL predicts this scale invariance if you use what is called a bimetric approach: a theory of two frames or metrics, one for gravity and one for matter. In this approach, the speed of light is proportional to the density of the universe. The key is in considering the timing at which quantum fluctuations in the early universe—which could be the seeds for galaxies—leave the horizon. With the speed of light shrinking, the horizon shrinks and different scales leave the horizon. "This is the whole game, it’s like cookery, and it’s about the dynamics and timing of these fluctuations leaving the horizon," says Magueijo.

Strings, Loops, and Potholes

Beyond these successes with structure formation, in recent years, independent researchers from string theory—which posits that elementary particles are comprised from tiny, vibrating loops of energy—have also added a new dimension to the VSL program. Magueijo has been encouraged to find that VSL cosmology can be independently realized using string theory, if you consider not just strings—linear, one-dimensional objects—but also membranes—planar, two-dimensional objects. Welcome to M-theory. When modeling a discretized geometry of spacetime in M-Theory, FQXi member Stephon Alexander, now at Haverford College, Pennsylvania, found that for very high frequencies light photons have to "leapfrog over the potholes" in spacetime, which increases their speed, says Magueijo. In effect, the speed of light becomes color-dependent, increasing the most for the highest frequencies. The further you go back in time towards the Big Bang, the hotter the cosmic plasma, and the higher the speed of light in the early universe.

VSL challenged accepted ideas

about fundamental physics.

about fundamental physics.

- Lee Smolin

Saying that the speed of light depends on energy is equivalent to saying that the spacetime geometry depends on energy: constructing the universe in radio or X-rays produces different spacetime geometries, says Smolin. This work, which goes by the name of deformed special relativity, underlies his recently published ideas on relative locality in collaboration with Giovanni Amelino-Camelia, at Sapienza University of Rome, Italy, Laurent Freidel, also at PI, and Jerzy Kowalski-Glikman, at the University of Wrocław, Poland; Amelino-Camelia was partially supported by FQXi funding. "In relative locality you give up the idea that there’s a universal notion of spacetime," Smolin says. The theory can be constrained by experiments to measure the possible energy dependence of the speed of light at very high energies, for example, from gamma ray bursts, which could observe a speed-dependence in the arrival times of photons. "The fact we haven’t seen it yet puts constraints on what you can do in quantum gravity," says Magueijo.

Signs of Speediness

Magueijo hopes that observational evidence will one day distinguish between the competing cosmological models of VSL and inflation. In his opinion, VSL goes one better than inflation, because small variations in the speed of light could be observed nowadays, making it testable: "Mainstream cosmology these days is inflation, but there’s no proof of it. It could be completely wrong. What I like so much about VSL was that it could be tested here and now." For instance, if primordial gravity waves—ripples in spacetime set off in the early universe—are detected, that would rule out VSL completely. That’s because the speed of such ripples in VSL is smaller than the speed of photons, so primordial gravity waves remain within the horizon, hence we can’t see them.

Finding positive evidence for VSL is not quite as easy. Astronomers have been hunting for variations in the

Magueijo emphasizes that all cosmological models are "speculative" to varying degrees, even though the hallowed inflationary theory has now become mainstream. Moffat argues that inflation’s popularity over VSL "is a sociological problem" and it is crucial to get more data to help choose between the rival models. Most likely, evidence to differentiate VSL from inflation could come from the shape of the distribution of patterns in the cosmic background radiation data collected by the Planck satellite, Moffat adds.

That’s something that Magueijo is currently looking into, though he admits that it will not be easy to rule out inflation because there are so many different versions of it that can produce any fluctuation you can think of. "In a way it’s the victim of its own success; it has become a theory of anything," says Magueijo.

"These are very hard experiments to do on the edge of knowledge," agrees Smolin. He continues to welcome VSL: Theory is concentrated on too few ideas these days, he says. "Magueijo has been very challenging to us—in terms of having ideas that challenge our confidence that we know the right direction for fundamental physics. This is a good thing."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

QUANTUM ANTIGRAVITY wrote on April 15, 2017

Hello,

I have made a theoretical as well as an empirical scientific discovery of quantum gravity and quantum antigravity.

Present quantum gravity theories suffer from too many space dimensions, and from too few experiments that could provide conclusive verifying, or falsifying empirical evidence. On the contrary, my hypothesis is simple, clear, and easily empirically verifiable:

https://quantumantigravity.wordpress.com

Should anybody need clarification, I am more than...

Hello,

I have made a theoretical as well as an empirical scientific discovery of quantum gravity and quantum antigravity.

Present quantum gravity theories suffer from too many space dimensions, and from too few experiments that could provide conclusive verifying, or falsifying empirical evidence. On the contrary, my hypothesis is simple, clear, and easily empirically verifiable:

https://quantumantigravity.wordpress.com

Should anybody need clarification, I am more than...

JUAN GUERRERO wrote on February 21, 2017

Your idea probably deserves some attention as it is plausible. After reading most of your book there were a few ideas that I walked away with in dismay. Ludicrous to think that there is an atmosphere of disdain among physicists towards heretics such as yourself when it is numbers that tell the final tale. I remembered somewhere something that I had read in depth regarding large stars bending light pathways over large distances, so it also plausible that given the right geometry, light could be...

Your idea probably deserves some attention as it is plausible. After reading most of your book there were a few ideas that I walked away with in dismay. Ludicrous to think that there is an atmosphere of disdain among physicists towards heretics such as yourself when it is numbers that tell the final tale. I remembered somewhere something that I had read in depth regarding large stars bending light pathways over large distances, so it also plausible that given the right geometry, light could be...

SHAWN SIMPSON wrote on November 6, 2016

The speed of light is not a variable, generally, however, it is not an absolute limit either. Matter, and enrgy, referred to as matter\energy hereafter, that is beyond the speed or energy threshold of light, is darkmatter\energy. At lightspeed, it loses density and expands infinitely, it "leaves" our frame of reference, but, is still present in our universe. It time dialates also. The "big bang" would have initially accelerated a portion of matter\energy to this state, inflating the universe at...

The speed of light is not a variable, generally, however, it is not an absolute limit either. Matter, and enrgy, referred to as matter\energy hereafter, that is beyond the speed or energy threshold of light, is darkmatter\energy. At lightspeed, it loses density and expands infinitely, it "leaves" our frame of reference, but, is still present in our universe. It time dialates also. The "big bang" would have initially accelerated a portion of matter\energy to this state, inflating the universe at...

read all article comments