Search FQXi


RECENT FORUM POSTS

Lorraine Ford: "Tom, Re "What makes you think I can't, Lorraine?": Because that would be..." in Wandering Towards a Goal:...

Jonathan Dickau: "I left out the best part... Of course; if I knew how to tell a joke I'd..." in Wandering Towards a Goal:...

John Cox: ""No phishing intrusions take place..." - Joe Fisher, Realist!?!" in Sounding the Drums to...

Joe Fisher: "Dear Anonymous, You may not have noticed that Professor Scott Aaronson and..." in Sounding the Drums to...

mcafee support: "we are providing best service to our McAfee users for any query related to..." in FQXi Essay Contest 2016:...

Aol support: "Our AOL customer support team is available 24/7 so you don’t have to..." in FQXi Essay Contest 2016:...

outlook support: "When ever you face any problem with your outlook email account then you..." in Bohemian Reality:...

smith jina: "awesome post, thank you. Epson Help Epson Support Epson Support Number ..." in What Happens Inside the...


RECENT ARTICLES
click titles to read articles

Sounding the Drums to Listen for Gravity’s Effect on Quantum Phenomena
A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Watching the Observers
Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

Bohemian Reality: Searching for a Quantum Connection to Consciousness
Is there are sweet spot where artificial intelligence systems could have the maximum amount of consciousness while retaining powerful quantum properties?

Quantum Replicants: Should future androids dream of quantum sheep?
To build the ultimate artificial mimics of real life systems, we may need to use quantum memory.

Painting a QBist Picture of Reality
A radical interpretation of physics makes quantum theory more personal.


FQXI ARTICLE
August 24, 2017

The Myth of Gravity
A new model in which gravity is not a fundamental force could—counterintuitively—give a controversial quantum gravity theory a boost. It may also change our picture of spacetime, and do away with dark energy.
by Sophie Hebden
April 24, 2010
Bookmark and Share


Erik Verlinde
University of Amsterdam
When thieves stole Erik Verlinde’s laptop and keys, while he was holidaying in the south of France, they could have had little notion that their crime would lead to a new model for gravity. But forced into taking an extra week’s vacation time, Verlinde began to ponder whether gravity might not be a fundamental force of nature, arising instead from thermodynamics. His ideas could give the controversial loop quantum gravity theory—in which spacetime is made up of quantum threads—a boost, and help explain the accelerated expansion of the universe.

Gravity may be the force that we are most familiar with in everyday life, but physicists do not yet understand its origin. Newton told us that apples fall towards Earth with an acceleration that depends on the Earth’s mass, the apple’s mass, and its distance from the centre of the Earth, while Einstein described gravity by the warping of the fabric of spacetime. But while these theories describe how gravity works, they don’t explain how it arises.

Verlinde, a string theorist at the University of Amsterdam in the Netherlands, believes that the key to understanding gravity is "information." He was inspired by early work on information storage in black holes by Stephen Hawking and Nobel laureate Gerard ’t Hooft. "When I was about fifteen I saw them on television talking about the physics of elementary particles and black holes," says Verlinde. "I knew then that I wanted to work in that area."

The Television Event Horizon

Hawking and ’t Hooft had both worked on the so-called holographic principle, which relates the information content—or entropy—of a black hole to the surface area of its event horizon, the hypothetical sphere around the black hole where gravity becomes so strong even light can’t escape. It’s as if the horizon is a spherical television screen with all the information about the three-dimensional volume within encoded on the pixels on its surface. Verlinde has shown that by combining the holographic principle with the thermodynamic quantities of heat and mechanical work, it’s relatively straightforward to derive Newton’s classical equation of gravity. (See "Decoding Entropic Gravity" for more details.)


Entropic force?
Imagining a particle near a spherical holographic screen
allows you to derive Newton’s law of gravity.
The work has been causing a stir amongst physicists. "Verlinde’s paper is remarkable in that we all felt so stupid for not having seen it before," says FQXi’s Lee Smolin of the Perimeter Institute, Ontario. "The mathematics involved is just high school algebra."

It might sound like re-inventing the wheel, but the approach implies that gravity is nothing more than the result of a system maximising its entropy, or disorder. At first glance, this looks like bad news for the quantum gravity crowd. If gravity is an "entropic force," there is no longer a need for physicists to attempt to reconcile general relativity with quantum mechanics, or hunt for the hypothetical graviton (the particle posited to carry the gravitational force just as photons mediate the electromagnetic force), says Paul Frampton, at the University of Tokyo in Japan. Rather, all we need to explain the interactions of particles is the Standard Model of particle physics and entropy. "It means that everyone looking into quantum gravity is misguided," says Frampton.

Quantum Threads

However, not all gravity researchers take that view. Smolin, a long term proponent of loop quantum gravity (LQG), believes that Verlinde’s work is not only compatible with LQG, it could even help to explain how familiar Newtonian gravity might emerge in this picture. According to LQG, spacetime isn’t the smooth fabric that Einstein envisioned; rather, if you zoom down to scales of 10-33 cm, the fabric turns out to be woven from quantum threads. The key point for Smolin is that the holographic principle is also valid in this framework, allowing him to apply a version of Verlinde’s argument to demonstrate directly for the first time that loop quantum gravity has a limit that yields Newtonian gravity.

Smolin notes that Verlinde’s model is tied to earlier work by FQXi member Ted Jacobson, who had shown in 1995 that Einstein’s equations of general relativity could be derived using thermodynamics and the holographic principle. "The wonderful thing about the arguments of Jacobson and Verlinde is they give a deep reason for why a quantum theory of gravity should yield the phenomena of gravitation," Smolin writes in his recent paper (arXiv:1001.3668v2).

There isn’t a fundamental
gravitational interaction.
Is that crazy enough?
- Paul Frampton
Frampton and colleagues Damien Easson and Nobel Laureate George Smoot have been looking at possible observable consequences of Verlinde’s entropic force. So far, cosmologists have struggled to explain why the expansion of the universe is accelerating using just standard general relativity. Instead, they attribute the acceleration to some mysterious "dark energy." To find a possible alternative to dark energy, Smoot’s team considered a spherical screen that lies on the apparent horizon of the universe, where distant objects recede at the speed of light. As information is sucked out across the horizon, the area of the screen grows, which, according to the holographic principle, increases the entropy of the universe. This gives rise to an entropic force that could explain the acceleration, "derived as a response to various microscopic fundamental forces such as electromagnetism," says Easson, at Arizona State University, Tempe. However, Easson adds that the work is "extremely speculative" at this stage (arXiv:1002.4278v2).

If such derivations of dark energy stand up then Verlinde’s ideas "could in some sense complete general relativity," says physicist Sabine Hossenfelder at the Nordic Institute of Theoretical Physics in Sweden. However, there is still a long way to go before physicists will abandon the notion that gravity is a real force as there are several things that remain vague in Verlinde’s formulation, she adds.

Frampton, however, is convinced that Verlinde is on the right track. "I believe that gravity is entirely explained by increases in entropy; there isn’t a fundamental gravitational interaction," he says. "That’s the bottom line. Is that crazy enough?"

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!
  • Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

  • HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

  • You may use superscript (10100) and subscript (A2) using [sup]...[/sup] and [sub]...[/sub] tags.

  • You may use bold (important) and italics (emphasize) using [b]...[/b] and [i]...[/i] tags.

  • You may also include LateX equations into your post.

Insert LaTeX Equation [hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview



preview equation
clear equation
insert equation into post at cursor


Your name: (optional)



Important: In order to combat spam, please select the letter in this menu between 'S' and 'U':




Recent Comments


EXPERIMENTAL quantum Anti-gravity — https://quantumantigravity.wordpress.com



I have made a theoretical as well as an empirical scientific discovery

of quantum gravity and quantum antigravity.



Present day quantum gravity theories suffer from

too many mathematical space dimensions, and from

too few conclusive experimental results.



My hypothesis is simple, clear,

and subject to easy empirical verification :...


How does the objects interact? What decides whether to attract or repel each other?


Does this mean that if a large hollow body was placed in space it's"gravity" for lack of understanding, could be equal to that of say..... Earth? Random virtual particles pressing onto the surface from all regions of space? "Gravity" being equal on the inside of the sphere to"gravity" on the outside perhaps? I'm struggling with practical application of this theory, though tantalizing to the imagination.

read all article comments

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.