RECENT ARTICLES

Using tiny mechanical devices to create accelerations equivalent to 100 million times the Earth’s gravitational field—mimicking the arena of quantum gravity in the lab.

The fuzziness of the quantum realm could arise from mathematical restrictions on what can ever be known.

Combining theories of quantum information with the science of heat and energy transfer could lead to new technologies.

Using superconducting circuits to create a curved-spacetime analog with stronger gravity than our cosmos.

A new model argues the forces between particles in the early universe loosed time's arrow, creating temporal order from chaos.

FQXI ARTICLE

July 30, 2015

Ripping Apart Einstein

Cutting the threads of the spacetime fabric and reinstating the aether could lead to a theory of quantum gravity.

March 7, 2010

PETR HOŘAVA

University of California, Berkeley

Credit: KITP, Santa Barbara

Physicists have spent decades searching for a way to reconcile the seemingly incongruous twin foundations of modern physics: quantum theory, which deals with the infinitesimally small, and Einstein’s theory of gravity, general relativity, which deals with the vast cosmos. This effort has led to a dazzling array of candidate theories—including superstring theory, loop quantum gravity, and doubly special relativity—but none have succeeded in unambiguously bridging the quantum-gravity divide. The problem: When you try to do the math to work out the strength of forces on the quantum-gravitational scale, your calculations return a maddening proliferation of infinite answers that have no physical meaning.

Now Hořava, at the University of California, Berkeley, claims to have found a solution that is both simple and—in physics terms, at least—sacrilegious. To make the two theories gel, he argues, you need to throw out Einstein’s tenet that time is always relative, never absolute.

Hořava’s controversial idea is based on the fact that the description of space and time in the quantum and relativistic worlds are in conflict. Quantum theory harks back to the Newtonian concept that time is absolute—an impassive backdrop against which events take place. In contrast, general relativity tells us that space and time are fundamentally intertwined; two events can only be marked relative to one another, and not relative to an absolute background clock. Einstein’s subjective notion of time is well accepted and is the hallmark of

"Lorentz invariance is not actually fundamental to a theory of quantum gravity," says Hořava. "But the problem so far has been that many cosmologists are wedded to the concept."

Good Gravitons

By restoring the absolute nature of time at very high energies, such as those in the early universe where quantum gravity would be important, Hořava can treat variations in space and time differently. The upshot of this is that in your calculations at very short distances you do not get such dramatic spatial variations as you do in general relativity, taming the infinities that frustrate other candidate theories of quantum gravity. This makes it possible to describe gravity on the quantum level using a well-behaved graviton—the hypothesized quantum particle thought to mediate gravity, just as the photon mediates the electromagnetic force (arxiv.org/abs/0901.3775).

The existence of an absolute

time might ensure that the

usual framework of quantum

mechanics can survive even

the most exotic regimes of

quantum gravity.

time might ensure that the

usual framework of quantum

mechanics can survive even

the most exotic regimes of

quantum gravity.

- Ted Jacobson

"The existence of an absolute time might ensure that the usual framework of quantum mechanics can survive even the most exotic regimes of quantum gravity," says physicist Ted Jacobson at the University of Maryland, College Park.

Surprisingly, Hořava’s trick is fairly commonplace in the laboratory. Condensed matter scientists looking at complex real-world systems, such as superconductors at low temperatures, have been using the idea that space and time are not on the same footing for years. Cosmologists do not usually take the lead from their condensed-matter cousins because of "sociological barriers," but the groups should look to each other for inspiration more often, says Hořava. He borrowed ideas from condensed matter models when developing his theory of quantum gravity. "In some condensed matter systems, relativistic behaviour and Lorentz invariance only emerge at lower energies," he says.

But while condensed matter physicists have shown that their models can recover relativistic behaviour as required at low energies, the big question is whether Hořava gravity can successfully morph back into the classical theory of relativity, in a way that agrees with all observations. In principle, general relativity should emerge at lower energies and larger distances. In other words: Look at a patch of the universe with infinitely powerful glasses and you would see that time and space are distinct from one another. Zoom out and the picture blurs, restoring Einstein’s more familiar spacetime fabric.

Knife-Edge

There is some support that this emergence does indeed happen from computer simulations of quantum gravity carried out by Jan Ambjørn of the Niels Bohr Institute at the University of Copenhagen and his colleagues. Ambjørn’s simulations showed that at short distances, the familiar four-dimensional spacetime of our macroscopic universe seems to shrink to just two dimensions—one space and one time. Hořava believes that his theory can explain how those spatial dimensions disappeared.

RINGING OUT EINSTEIN?

Light from a distant blue galaxy has been bent around a closer white

galaxy—as predicted over 70 years ago by general relativity—forming

an "Einstein ring." Can rivals to relativity explain such observations?

Since Hořava first proposed his theory in 2009, other researchers have used it to answer important cosmic questions about the nature of the Big Bang, dark matter and dark energy. Jacobson, however, feels there is much work still to be done before the theory can be widely accepted. "Hořava’s paper triggered a feeding frenzy, but most workers outside that frenzy remained wisely sceptical," he says.

Gustavo Niz at the University of Nottingham, UK, notes that physicists have found that in its original form, Hořava theory has plenty of "pathologies" and does not recover general relativity. "However, the idea behind the model is encouraging and scientists have ideas on how to cure all these secondary problems," he says.

Among those attempting to fix the original model are Diego Blas and Sergei Sibiryakov at the Swiss Federal Institute of Technology (EPFL) in Lausanne, and Oriol Pujolas at CERN near Geneva. Their work has revealed a flaw in the model: Minor variations in the initial conditions used in calculations in Hořava gravity can give dramatically different results (arxiv.org/abs/0909.3525). The culprit is a unique and unstable "breathing mode" in which space can locally expand or contract, wreaking havoc with your answers. To address this problem, they’ve modified Hořava’s initial proposal, making it harder for this breathing mode to develop. They have dubbed their formulation "extended Hořava gravity."

“In my view, the extended version of Hořava gravity is the only currently viable approach and needs to be extensively analysed,” says Jacobson.

Einstein’s Aether?

Jacobson’s own current research, funded by FQXi, examines the short distance structure of space and the quantum vacuum as space expands. He is also now looking at connections between Hořava gravity and an earlier modification of relativity, dubbed "Einstein-aether theory" that he had proposed a decade back.

Nineteenth-century physicists believed light waves must move through an "aether"—a medium that permeates all of space, allowing light to propagate just as sound waves move through air. However, a series experiments by Michelson and Morley failed to find any evidence that Earth moves through an aether. Einstein’s theory of relativity was the final nail in the aether’s coffin, because it explained that light moves through a vacuum.

Jacobson does not believe that the nineteenth-century aether exists. However, within Einstein-aether theory—in contrast to general relativity—there is a preferred time that can be used as an absolute reference to mark events against. It is as if spacetime were filled with a fluid—an aether—which defines a "rest frame" at each event.

The list of potential experimental

signatures includes modified orbits,

gravitational radiation, the structure of

neutron stars and black holes.

signatures includes modified orbits,

gravitational radiation, the structure of

neutron stars and black holes.

- Ted Jacobson

Jacobson has shown that some of the tests proposed to confirm or rule out Einstein-aether theory over the years could also falsify Hořava gravity (http://arxiv.org/abs/1001.4823). "The list of potential experimental signatures includes everything gravitational: from modified

For now though, Hořava remains modest, and is glad that others are examining his work. "My papers present the basic idea but don’t present a full theory yet," he says. "It is still unclear which of the possible different trajectories is best."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

**Important:** In order to combat spam, please select the letter in this menu between 'V' and 'X':
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

STEVE AGNEW wrote on July 12, 2015

Matter decay is indeed inconsistent with aspects of GR, but MEE and gravity delay of light are still true. Since GR is built on space, motion, and continuous time, GR has the same limitations as space, motion, and continuous time.

Quantum time especially is notably inconsistent with GR time and the unification of charge and gravity is straightforward in a folded universe with matter decay and discrete matter and time. Axioms are always a gimme in science and science uses the axioms that...

Matter decay is indeed inconsistent with aspects of GR, but MEE and gravity delay of light are still true. Since GR is built on space, motion, and continuous time, GR has the same limitations as space, motion, and continuous time.

Quantum time especially is notably inconsistent with GR time and the unification of charge and gravity is straightforward in a folded universe with matter decay and discrete matter and time. Axioms are always a gimme in science and science uses the axioms that...

GEORGINA WOODWARD wrote on July 12, 2015

Anonymous replied on Jul. 12, 2015 @ 05:21 GMT, was me Georgina

Anonymous replied on Jul. 12, 2015 @ 05:21 GMT, was me Georgina

ANONYMOUS wrote on July 12, 2015

Eckard, (All),

non simultaneity of (observed )events is possible because different observers receive different EM potential sensory data from which their present experience is constructed. The observer in a stationary frame looking at the moving object receives different EM data simultaneously than is received by the moving observer. So two clocks synchronized for one observer might be observed not synchronized for another as each constructs their present experience from the data they...

Eckard, (All),

non simultaneity of (observed )events is possible because different observers receive different EM potential sensory data from which their present experience is constructed. The observer in a stationary frame looking at the moving object receives different EM data simultaneously than is received by the moving observer. So two clocks synchronized for one observer might be observed not synchronized for another as each constructs their present experience from the data they...

read all article comments

And select the letter between 'M' and 'O':