Search FQXi


Steve Agnew: "I do agree that there is more than one way to skin a cat and there are many..." in LIGO to Make a...

Steve Dufourny: "Are you serious Mr Valev? The BH are necessary for the galaxies, this..." in LIGO to Make a...

Thomas Ray: ""But the consciousness/information experienced by particles, atoms,..." in Measuring Consciousness...

Steve Dufourny: "Hello dear thinkers,after all ,all is a question of good governance and..." in How risky is too risky?...

Anonymous: "In science, it is fairly predictable that most major advances will not be..." in How risky is too risky?...

Lorraine Ford: "Rob, There is NO “process that causes . . . consciousness”, where..." in Measuring Consciousness...

click titles to read articles

The Quantum Reality Paradox
How the search for God’s limits led to the discovery of quantum contextuality—a weird phenomenon that could provide the 'magic' needed for super-fast computing.

Quantum Cybernetics
The quest for a meta-theory of quantum control that could one day explain physical systems, certain biological phenomena—and maybe even politics.

Video Article: Solar-System-Sized Experiment to Put Time to the Test
Is quantum theory or relativity right about the nature of time? Bouncing radar beams off the moons of Jupiter just might help sort things out.

Conjuring a Neutron Star from a Nanowire
Using tiny mechanical devices to create accelerations equivalent to 100 million times the Earth’s gravitational field—mimicking the arena of quantum gravity in the lab.

Inferring the Limits on Reality (that Even the Gods Must Obey)
The fuzziness of the quantum realm could arise from mathematical restrictions on what can ever be known.

February 13, 2016

Ripping Apart Einstein
Cutting the threads of the spacetime fabric and reinstating the aether could lead to a theory of quantum gravity.
by Bob Swarup
March 7, 2010
Bookmark and Share

University of California, Berkeley
Credit: KITP, Santa Barbara
If there’s one thing Einstein taught us, it’s that time is relative. But physicist Petr Hořava is challenging this notion and tearing through the fabric of spacetime in his quest for a theory of quantum gravity. His work may also resurrect another entity that Einstein had seemingly buried—the aether.

Physicists have spent decades searching for a way to reconcile the seemingly incongruous twin foundations of modern physics: quantum theory, which deals with the infinitesimally small, and Einstein’s theory of gravity, general relativity, which deals with the vast cosmos. This effort has led to a dazzling array of candidate theories—including superstring theory, loop quantum gravity, and doubly special relativity—but none have succeeded in unambiguously bridging the quantum-gravity divide. The problem: When you try to do the math to work out the strength of forces on the quantum-gravitational scale, your calculations return a maddening proliferation of infinite answers that have no physical meaning.

Now Hořava, at the University of California, Berkeley, claims to have found a solution that is both simple and—in physics terms, at least—sacrilegious. To make the two theories gel, he argues, you need to throw out Einstein’s tenet that time is always relative, never absolute.

Hořava’s controversial idea is based on the fact that the description of space and time in the quantum and relativistic worlds are in conflict. Quantum theory harks back to the Newtonian concept that time is absolute—an impassive backdrop against which events take place. In contrast, general relativity tells us that space and time are fundamentally intertwined; two events can only be marked relative to one another, and not relative to an absolute background clock. Einstein’s subjective notion of time is well accepted and is the hallmark of Lorentz invariance, the property that lies at the heart of general relativity.

"Lorentz invariance is not actually fundamental to a theory of quantum gravity," says Hořava. "But the problem so far has been that many cosmologists are wedded to the concept."

Good Gravitons

By restoring the absolute nature of time at very high energies, such as those in the early universe where quantum gravity would be important, Hořava can treat variations in space and time differently. The upshot of this is that in your calculations at very short distances you do not get such dramatic spatial variations as you do in general relativity, taming the infinities that frustrate other candidate theories of quantum gravity. This makes it possible to describe gravity on the quantum level using a well-behaved graviton—the hypothesized quantum particle thought to mediate gravity, just as the photon mediates the electromagnetic force (

The existence of an absolute
time might ensure that the
usual framework of quantum
mechanics can survive even
the most exotic regimes of
quantum gravity.
- Ted Jacobson
So far Hořava’s potential resolution of a decades-long physics stalemate has been creating a buzz. Last year, five of the top ten cited academic papers in high energy physics dealt in some form with Hořava’s model.

"The existence of an absolute time might ensure that the usual framework of quantum mechanics can survive even the most exotic regimes of quantum gravity," says physicist Ted Jacobson at the University of Maryland, College Park.

Surprisingly, Hořava’s trick is fairly commonplace in the laboratory. Condensed matter scientists looking at complex real-world systems, such as superconductors at low temperatures, have been using the idea that space and time are not on the same footing for years. Cosmologists do not usually take the lead from their condensed-matter cousins because of "sociological barriers," but the groups should look to each other for inspiration more often, says Hořava. He borrowed ideas from condensed matter models when developing his theory of quantum gravity. "In some condensed matter systems, relativistic behaviour and Lorentz invariance only emerge at lower energies," he says.

But while condensed matter physicists have shown that their models can recover relativistic behaviour as required at low energies, the big question is whether Hořava gravity can successfully morph back into the classical theory of relativity, in a way that agrees with all observations. In principle, general relativity should emerge at lower energies and larger distances. In other words: Look at a patch of the universe with infinitely powerful glasses and you would see that time and space are distinct from one another. Zoom out and the picture blurs, restoring Einstein’s more familiar spacetime fabric.


There is some support that this emergence does indeed happen from computer simulations of quantum gravity carried out by Jan Ambjørn of the Niels Bohr Institute at the University of Copenhagen and his colleagues. Ambjørn’s simulations showed that at short distances, the familiar four-dimensional spacetime of our macroscopic universe seems to shrink to just two dimensions—one space and one time. Hořava believes that his theory can explain how those spatial dimensions disappeared.

Light from a distant blue galaxy has been bent around a closer white
galaxy—as predicted over 70 years ago by general relativity—forming
an "Einstein ring." Can rivals to relativity explain such observations?
According to Hořava, this vanishing point marks the knife-edge at which general relativity breaks down and his theory of gravity comes into play. As the fabric of spacetime rips, space and time start to stretch at different rates. The stronger constraints on short distance spatial variations mean that space now stretches only a third as quickly as time, effectively reducing the familiar three spatial dimensions into just one.

Since Hořava first proposed his theory in 2009, other researchers have used it to answer important cosmic questions about the nature of the Big Bang, dark matter and dark energy. Jacobson, however, feels there is much work still to be done before the theory can be widely accepted. "Hořava’s paper triggered a feeding frenzy, but most workers outside that frenzy remained wisely sceptical," he says.

Gustavo Niz at the University of Nottingham, UK, notes that physicists have found that in its original form, Hořava theory has plenty of "pathologies" and does not recover general relativity. "However, the idea behind the model is encouraging and scientists have ideas on how to cure all these secondary problems," he says.

Among those attempting to fix the original model are Diego Blas and Sergei Sibiryakov at the Swiss Federal Institute of Technology (EPFL) in Lausanne, and Oriol Pujolas at CERN near Geneva. Their work has revealed a flaw in the model: Minor variations in the initial conditions used in calculations in Hořava gravity can give dramatically different results ( The culprit is a unique and unstable "breathing mode" in which space can locally expand or contract, wreaking havoc with your answers. To address this problem, they’ve modified Hořava’s initial proposal, making it harder for this breathing mode to develop. They have dubbed their formulation "extended Hořava gravity."

“In my view, the extended version of Hořava gravity is the only currently viable approach and needs to be extensively analysed,” says Jacobson.

Einstein’s Aether?

Jacobson’s own current research, funded by FQXi, examines the short distance structure of space and the quantum vacuum as space expands. He is also now looking at connections between Hořava gravity and an earlier modification of relativity, dubbed "Einstein-aether theory" that he had proposed a decade back.

Nineteenth-century physicists believed light waves must move through an "aether"—a medium that permeates all of space, allowing light to propagate just as sound waves move through air. However, a series experiments by Michelson and Morley failed to find any evidence that Earth moves through an aether. Einstein’s theory of relativity was the final nail in the aether’s coffin, because it explained that light moves through a vacuum.

Jacobson does not believe that the nineteenth-century aether exists. However, within Einstein-aether theory—in contrast to general relativity—there is a preferred time that can be used as an absolute reference to mark events against. It is as if spacetime were filled with a fluid—an aether—which defines a "rest frame" at each event.

The list of potential experimental
signatures includes modified orbits,
gravitational radiation, the structure of
neutron stars and black holes.
- Ted Jacobson
Like Horava’s theory, Einstein-aether theory breaks Lorentz invariance and may lead to a viable mechanism for producing gravitons. To get from the general Einstein-aether theory to extended Horava gravity, you simply assume that the aether rest frame arises from an absolute time.

Jacobson has shown that some of the tests proposed to confirm or rule out Einstein-aether theory over the years could also falsify Hořava gravity ( "The list of potential experimental signatures includes everything gravitational: from modified orbits to gravitational radiation—there is a new type of gravity wave in Hořava theory from the breathing mode—to the structure of neutron stars and black holes, and perhaps even more exotic stuff," says Jacobson.

For now though, Hořava remains modest, and is glad that others are examining his work. "My papers present the basic idea but don’t present a full theory yet," he says. "It is still unclear which of the possible different trajectories is best."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!
  • Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

  • HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

  • You may use superscript (10100) and subscript (A2) using [sup]...[/sup] and [sub]...[/sub] tags.

  • You may use bold (important) and italics (emphasize) using [b]...[/b] and [i]...[/i] tags.

  • You may also include LateX equations into your post.

Insert LaTeX Equation [hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation
clear equation
insert equation into post at cursor

Your name: (optional)

Important: In order to combat spam, please select the letter in this menu between 'F' and 'H':

Recent Comments

Einstein's Length Contraction Absurdity

All consequences of Einstein's 1905 false constant-speed-of-light postulate are absurd (according to sane people) but Einsteinians would admit absurdity only if the theory is shown to predicts that two observers see incompatible events occurring at the same location (e.g. if the bug from the bug-rivet paradox is squashed according to one observer and alive and kicking according to the other).

See the story starting at 8:34 in this video:...

Hi Karoly.

Glad to see you on this forum. I lurk around here occasionally. I'm waiting for the essay topic to be announced. The research topic this year concerns the physics of the observer. If the essay topic is similar, I have a few thoughts that I can introduce that are applicable to GR and the vacuum.

Best Regards,

Gary Simpson

Houston, Tx

The debate still goes on about the substances that permeates space, whether it is called space medium, eather, or whatever else that gives an undeniable character to space.

If we don't understand space we will never understand PHYSICS.

Formulating a rather questionable GR theory, Einstein finally realized, that if space is an empty thing- i.e. noting exist in it, being a total void, one cannot bend the "nothing" (only physical thing can be bent)

Please, read his own words...

read all article comments

Please enter your e-mail address:

And select the letter between 'V' and 'X':

Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.