Search FQXi


Mike Witot: "Great. Thanks a lot for posting that info! click here" in A Self-Gravitational...

Mike Witot: "I really like to read this informations click here" in Dimensional Reduction in...

Mike Witot: "I think this is really interesting click here" in Chasing the black holes...

kurt stocklmeir: "em drive metamaterials at 1 end that create negative radiation pressure -..." in Alternative Models of...

jiya joseph: "I guess a workshop is conducted by the people that are favorable for the..." in Schrödinger’s Cat...

mono joli: "thanks a lot for such a great topic. Scary Maze Games Basketball Legends..." in The Race to Replace the...

Joe Fisher: "Dear Dr. Brendan Foster, Of course: “We Are All Connected .” My..." in We Are All Connected

Caroline v: "Thanks for informing us about FQXi-sponsored workshop which aim was to..." in Schrödinger’s Cat...

click titles to read articles

Our Place in the Multiverse
Calculating the odds that intelligent observers arise in parallel universes—and working out what they might see.

Sounding the Drums to Listen for Gravity’s Effect on Quantum Phenomena
A bench-top experiment could test the notion that gravity breaks delicate quantum superpositions.

Watching the Observers
Accounting for quantum fuzziness could help us measure space and time—and the cosmos—more accurately.

Bohemian Reality: Searching for a Quantum Connection to Consciousness
Is there are sweet spot where artificial intelligence systems could have the maximum amount of consciousness while retaining powerful quantum properties?

Quantum Replicants: Should future androids dream of quantum sheep?
To build the ultimate artificial mimics of real life systems, we may need to use quantum memory.

October 18, 2017

Taking on String Theory’s 10-D Universe with 8-D Math
A bizarre set of of 8-dimensional numbers could explain how to handle string-theory’s extra dimensions, why elementary particles come in families of three—and maybe even how spacetime emerges in 4-dimensions.
by Anil Ananthaswamy
FQXi Awardees: Tevian Dray
September 13, 2009
Bookmark and Share

Tevian Dray (far left) and Corinne Manogue (far right)
Ask Tevian Dray and Corinne Manogue what it is like to be a married couple working towards a unified theory of fundamental particles and they’ll tell you to ask their children. "They have been known to complain about the dinner-table conversation," says Dray.

Manogue puts it in context: "Tevian is very much the mathematician and I’m very much the physicist. I have a tendency to see the physics that we are striving for, but through a glass, darkly," she says. "I have some sense of where we want to go, but it is cloudy, and kind of befuddled. The first thing that happens is I say, ’we want to do this.’ His reaction is, ’I have no idea what you are saying.’ And so we go through a very tumultuous period, where he is trying to get me to articulate clearly enough what I mean so that he can do the mathematics. It’s typically a loud and frustrating time. At the dinner table, most often."

Together Dray and Manogue are trying to tackle a profound question in physics: Why is our universe described so well by the standard model of particle physics? The standard model works in four dimensions—three of space and one of time—and has been extremely successful at explaining how elementary particles interact with each other. And yet there are vagaries that the standard model can’t make sense of, such as why these particles have the masses that they do, or why they group together in families of three with similar properties, but different masses. Dray and Manogue, who are both at Oregon State University in Corvallis, are convinced that the answer lies in the mathematics of higher dimensions—no less than 10 dimensions, in fact.

It’s typically loud and
frustrating. At the dinner
table, most often.
- Corinne Manogue on working with Dray
If the idea that the universe contains 10 dimensions sounds familiar, it’s because it’s often bandied about by string theorists. In the mid-1980s, superstring theory was going through a revolution. Physicists had developed equations to describe fundamental particles as strings vibrating in 10 dimensions. But these equations were extremely difficult to solve. At the time, Manogue was working with David Fairlie of Durham University in the UK, and together they realized that a bizarre system of numbers, called the octonions, could come to the rescue.

Strange Brood

Octonions are a strange brood, forming an eight-dimensional number system (see sidebar: "The Crazy Old Uncle of Algebra."). By contrast, the lovable real numbers that we’re all comfortable with live in one dimension—that is, they can be written out along a one-dimensional number line; while the complex numbers that some of the more mathematically-inclined dabble with, make up a two-dimensional number system.

In the standard model, particles can be split into fermions, which make up matter, and bosons, which are associated with the fundamental forces of nature. Fairlie discovered that octonions are handy for writing out the equations for how bosons move. Working with Fairlie and with Anthony Sudbury of the University of York, UK, Manogue later discovered that the very same octonions could also be used to describe the behavior of fermions.

The geometric structure F4, pictured here, could one
day help us visualize how the eight-dimensional
octonions describe quarks in our 4-D world.
Using octonions, Manogue and Dray can now describe the electrons and their cousins, the muons and tau particles, and also the neutrinos in 10 dimensions. It’s a fantastic achievement, but Dray emphasizes that there’s still a long way to go. "What we cannot do in our language at all is have them do anything other than sit there," says Dray. "If I stand up in front of a physics audience and say, ’here’s my electron, and by the way, I don’t yet even know how it interacts with electric fields,’ I’ll get laughed at."

That’s exactly the objection that Fairlie raises about the work. "There is no answer to questions of particle interactions," he says. He points out that the peculiar mathematics of octonions introduces new problems. In particular, octonions are non-associative (see sidebar). However, all known physical processes are associative, so using octonions to characterise particle interactions will be tricky, Fairlie says.

If this octonion stuff
is right, it tells you
uniquely what to do with
the extra-dimensions and
how to handle them.
- Tevian Dray
Despite this stumbling block, Manogue and Dray continue to plug away. They have used their octonions to encode the momentum and spin properties of these particles, explain why neutrinos are "left-handed" (that is, why the neutrinos’ spins are always oriented in one particular sense relative to the direction in which they move and never in the opposite sense), and even provide clues to why the particles cluster into families of three. These properties seem to be inherent in the language of octonions.

"Dray and Manogue are among the few really good physicists who think hard about the octonions and what they might mean for physics," says John Baez, a mathematical physicist at the University of California, Riverside. "As far as I’m concerned, these questions remain mysteries. But Dray and Manogue have found some tantalizing clues."

The next step—using a $51,393 grant from FQXi—is to try to use octonions to identify quarks and also to figure out how particles get their charge. "At that stage we might be able to make some experimentally verifiable predictions, like there is no Higgs," says Manogue.

Collapsing Dimensions

Their ultimate goal is to show that the standard model is just a natural consequence of describing the fundamental particles in 10 dimensions. It if works, octonions could also help solve one of the biggest puzzles facing string theorists: How their hypothetical six extra dimensions of space are folded up so that we only experience four-dimensions in our universe.

This may suggest that
spacetime isn’t a fundamental
property of the universe,
but only emerges in its four-
dimensional description.
Currently, string theorists have an infinity of possibilities for how this folding might happen. But Manogue and Dray have discovered that choosing one particular octonion to focus on from their arsenal, while neglecting the rest, "collapses" the 10 dimensions down to four dimensions, in a simple way. Interestingly, it doesn’t matter which octonion you choose, you always end up with a working four-dimensional universe. "If this octonionic stuff is right, it tells you uniquely what to do with the extra dimensions and how to handle them," says Manogue.

Octonions may also be hinting at another deep truth about the structure of the universe. In 10 dimensions, octonions can be used to describe a particle’s momentum, but not its position. But after the description is collapsed down from 10 to four dimensions, particles can be described in both ways. This may suggest that spacetime isn’t a fundamental property of the universe, but only emerges in its four-dimensional description. "That would be incredibly profound, I think," says Manogue.

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!
  • Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

  • HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

  • You may use superscript (10100) and subscript (A2) using [sup]...[/sup] and [sub]...[/sub] tags.

  • You may use bold (important) and italics (emphasize) using [b]...[/b] and [i]...[/i] tags.

  • You may also include LateX equations into your post.

Insert LaTeX Equation [hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation
clear equation
insert equation into post at cursor

Your name: (optional)

Recent Comments

2^0 = Q (Real), 2^1 = C(Complex)I, 2^2 = H(quaternions)IJK, 2^3 = O(octonions )

Is there a next level?

2^4 = Hextonian? 16 dimensions? ijklmnopqrstuvw

15-Point Projective Space?

dimensions and the shape seems to be a key of understanding of the natures fundamentals

The core Idea we postulate it is that the nature has same fundamentals. In this scientific article we

will explore the broad area in physical science in different aspect and compare to existing known

scientific theories. There are no remarkable contradictions with accepted theories, instead

integrates and interprets to a better Unified theory.

Gravity is the basic interaction and the Photon is the ultimate elementary particle that every

thing is made of. Sphere...

read all article comments

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.