Search FQXi


Anonymous: "So, Ginger, What is your thinking on whether Planck's yet to be..." in Purifying Physics: The...

Ginger Grey: "When we studied Physics at Central Washington University, we used to hire..." in Purifying Physics: The...

Steve Dufourny: "Hi Jonathan, Your reasoning is relevant.Let's try to do it Jonathan with..." in FQXi Essay Contest 2016:...

Jonathan Dickau: "As it turns out... My personal philosophy specifically treats the notion..." in FQXi Essay Contest 2016:...

Quantum Antigravity: "EXPERIMENTAL quantum Anti-gravity —..." in The Myth of Gravity

Pentcho Valev: "Money for teleology and silly songs only? The teleology contest is a..." in Towards a Goal — Two...

click titles to read articles

Bohemian Reality: Searching for a Quantum Connection to Consciousness
Is there are sweet spot where artificial intelligence systems could have the maximum amount of consciousness while retaining powerful quantum properties?

Quantum Replicants: Should future androids dream of quantum sheep?
To build the ultimate artificial mimics of real life systems, we may need to use quantum memory.

Painting a QBist Picture of Reality
A radical interpretation of physics makes quantum theory more personal.

The Spacetime Revolutionary
Carlo Rovelli describes how black holes may transition to "white holes," according to loop quantum gravity, a radical rewrite of fundamental physics.

Riding the Rogue Quantum Waves
Could giant sea swells help explain how the macroscopic world emerges from the quantum microworld? (Image credit: MIT News)

April 26, 2017

Quantum Upsizing
Mirror, mirror on the wall, what is the largest quantum object of them all? Aspelmeyer, Schwab, and Zeilinger have teamed up to find out.
by Grace Stemp-Morlock
August 15, 2008
Bookmark and Share

University of Vienna
Credit: Jaqueline Godany
They say that bigger is better. Keith Schwab, Anton Zeilinger, and Markus Aspelmeyer certainly agree. They are applying the adage to both quantum devices and scientific collaborations.

Defying the standard wisdom of the nanotechnology crowd, the team wants to scale their nanotools up. They hope to create quantum effects in ever larger objects, to test how far they can push the boundary between the quantum and classical realms.

But that’s only part of it. Stretching across continents, the collaboration itself is an exercise in bigger and better. Schwab and a small army of grad students operate out of his lab at Cornell University in Ithaca, New York, while Aspelmeyer, Zeilinger, and another crew of grad students work in Austria, at the University of Vienna. The group leaders rarely see each other face-to-face, yet they regularly share ideas, students, and even lab equipment.

Quantum effects are mysterious, says Schwab. "Why do they work on a small scale but not at a big scale?" This, he says, is the major question that the group plans to answer: "Can we start to observe quantum behavior in bigger and bigger objects?"

Quantum Breakdown

To investigate where quantum mechanics breaks down and classical mechanics begins, the team is investigating two weird quantum properties: entanglement and superposition. When two particles become entangled, they become inextricably intertwined, so that changing the properties of one has an immediate effect on the properties of its partner. Superposition is another feature that is peculiar to quantum systems. Before a quantum object is measured, it does not have definite characteristics. Instead, it exists in a superposition of multiple mutually contradictory states—allowing it to be in two places at once, for example.

Can we start to
observe quantum
behavior in bigger
and bigger objects?
- Keith Schwab
If the team can create a quantum effect in an object that is big enough to see with our eyes, it would have major implications for our understanding of how the laws of physics work.

In the quest to do this, Aspelmeyer is using micro-mirrors, just half a millimeter across and a hundredth of a millimeter wide, to pick up quantum effects. That may sound small, but one micro-mirror contains billions of atoms, making the system several orders of magnitude larger and more complex than anything that has been used to test quantum mechanics before. The team will bounce entangled photons off the mirrors. The trick is to see if the photons transfer their quantum nature to the mirror.

Micro Diving Boards

"If one photon hits the mirror, it kicks the mirror, which then oscillates with a certain amplitude," says Aspelmeyer. He likens the situation to the motion of a diving board. "If there were two people on the diving board it goes up and down more strongly," he says. Similarly, you can work out how many photons have hit the mirror, by how much it vibrates.

Sounds straightforward. But what happens if the number of photons that hit the mirror is not an exact number?

Cornell University
That would be the case if a superposition of an indefinite number of photons hits the mirror. Now the diving board doesn’t know exactly how many people are standing on it. "The mirror can’t decide how far it will move, and you’ve created an entangled state," says Aspelmeyer. And a quantum effect would have been demonstrated on a larger scale than ever before.

For the experiment to work, the researchers need to keep their cool—or at least, keep their apparatus at a low temperature because heat causes the mirror to shake on its own. This is where Schwab comes in. Not only will Schwab build the micro-mirror at his lab, he has also spent years using cryogenics and laser cooling trying to get tiny mechanical systems as cold as possible. One of the techniques used to cool particles (and small mechanical devices) is to hit them with laser light. When hit with just the right frequency of laser light, the particles temporarily absorb the light, gaining energy. However, they quickly lose this again, releasing more energy than they absorbed in the process, and cooling down to a temperature that is lower than where they started.

Quantum Milestones

Using this technique and others, Schwab has cooled mechanical devices to just above their lowest possible energy level, known as the ground state. "We want to hit some basic quantum mechanical milestones like cooling mechanical devices with light down to ground state," said Schwab. Zeilinger was the matchmaker who brought Schwab and Aspelmeyer together. He believes they work so well together not only because they share the same interest but also because "their personalities get along well together."

"Coming from different backgrounds there are so many different things to share and exchange," says Aspelmeyer. "We have learned a great deal from Keith already concerning mechanical systems and low temperature physics, and there were many good discussions where the quantum optics from our side brought new perspective to the experiments."

We want to hit
some basic quantum
mechanical milestones.
- Keith Schwab
Schwab also agrees that collaboration is the key to success. "The techniques we use are pretty deep in the amount of years it takes to master each," he says. "Combining forces is the only way to do this."

Aashish Clerk, of McGill University in Montreal, Canada thinks the work will have far-reaching applications. The fragility of quantum states has been a big ob-stacle for building quantum computers. Understanding the quantum-classical crossover could help us learn how to prevent quantum effects from breaking down, says Clerk.

Cornell University
Nobel Laureate Tony Leggett, of the University of Illinois at Urbana-Champaign, is keenly watching the team’s work. "It’s important to probe quantum mechanics on various frontiers, and one frontier not probed enough is in the direction towards the real world," he says.

Crossing Continents

It’s one thing to share theories and ideas with researchers overseas, but how tough is it to carry out cross-continental experiments? No stranger to international scientific collaboration, Zeilinger has worked with scientists in New York and Boston, while being based in Vienna. He believes the ability to work for the common good, rather than competing, is a simple but essential element.

One frontier not probed
enough is in the
direction towards the
real world.
- Tony Leggett
"International collaborations work well as long as both sides appreciate the importance of the other and that working together is more important than whether the other side is slightly ahead," he says.

Currently, students from Vienna regularly travel to New York to fabricate the nanotools and learn some cooling techniques, while some Cornell students will also begin to travel to Vienna soon to do some measurements. Technologies such as Skype and email also allow the group to stay connected despite being spread across a big area geographically.

"I really think this is the best that could happen when people with very different backgrounds meet and collaborate," said Aspelmeyer. "It’s been great discussing ideas with Keith. Huge fun."

And the fruits of their collaboration will begin to ripen as temperatures continue to drop.

Click here to discuss this article in the FQXi forum.

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!
  • Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

  • HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

  • You may use superscript (10100) and subscript (A2) using [sup]...[/sup] and [sub]...[/sub] tags.

  • You may use bold (important) and italics (emphasize) using [b]...[/b] and [i]...[/i] tags.

  • You may also include LateX equations into your post.

Insert LaTeX Equation [hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation
clear equation
insert equation into post at cursor

Your name: (optional)

Important: In order to combat spam, please select the letter in this menu between 'J' and 'L':

Recent Comments

Mesomorphic region experiments are required to be conducted. It may be a difficult regime but human beings are smart enough to generate new design ideas in the minds of prospective physicists to conduct such experiments in the near future. What about High energy Compton scattering using nanostructured crystal of silver or gold! Where to see the effect of change in value of Planck's constant, compton scattered electron or the scattered photon?

The paper

argues that quantum theory is intrinsically nonlinear, and goes to the standard linear limit for microscopic objects. THe nonlinear theory goes to the classical limit for large objects, but departs from linear quantum mechanics for mesoscopic objects.

Because of the nnlinearity, the lifetime of two superposed states is no longer infinite. It decreases as the number of atoms in the object under study increases, going from an...

This bold attempt at a tough problem is highly commendable. My personal interest has arisen in this experiment from the desire to test the valdity of possible variation in the value of h above 0 limit for classical objetcs/processes. The interst follows an attempt by Tejinger Singh of TIFR, Mumbai, India who has developed a theory for such a mesomorphic region where neither classical nor quantum mechanics is strictly valid.

I have yet to grasp the full import of the planning being done by...

read all article comments

Please enter your e-mail address:
Note: Joining the FQXi mailing list does not give you a login account or constitute membership in the organization.